

Matrix Approximation Problems

Suvrit Sra
EU Regional School, RWTH Aachen
April 28, 2010

(MPI für biologische Kybernetik, Tübingen)

What's the course about?

$\boldsymbol{A} \approx \hat{\boldsymbol{A}}$

What's the course about?

$\boldsymbol{A} \approx \hat{\boldsymbol{A}}$

What's the course about?

What's the course about?

$A \approx \hat{A}$

Not quite!

What's the course about?

$\boldsymbol{A} \approx \hat{\boldsymbol{A}}$

Given an input matrix \boldsymbol{A} compute a matrix $\hat{\boldsymbol{A}}$ that satisfies certain desired properties, e.g.,

What's the course about?

$A \approx \hat{\boldsymbol{A}}$

Given an input matrix \boldsymbol{A} compute a matrix $\hat{\boldsymbol{A}}$ that satisfies certain desired properties, e.g.,

- symmetry, $\hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}$
- sparsity, \# nnz $(\hat{\boldsymbol{A}})$ is small
- positive definiteness, $\hat{\boldsymbol{A}} \succeq 0$
- low-rank, $\hat{\boldsymbol{A}}=\boldsymbol{B C}$
- constraints, $\hat{\boldsymbol{A}} \in \mathcal{A}$

Today's lecture touches

1 Matrix Analysis
2 Numerical linear algebra
3 Computer Science
4 High-performance computing
5 Numerical optimization
6 Statistics
7 Data mining \& machine learning
8 Image Processing, Astronomy, etc.

Today's lecture touches

1 Matrix Analysis
2 Numerical linear algebra
3 Computer Science
4 High-performance computing
5 Numerical optimization
6 Statistics
7 Data mining \& machine learning
8 Image Processinq, Astronomy, etc.

Introduction - matrices all over

Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia;

Introduction - matrices all over

■ Images

■ Scientific Computing

${ }^{1}$ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia;

Introduction - matrices all over

■ Images

- Scientific Computing

- Statistics

IV: Darstellung der birnxersorg. Arterien	Ziel: Auffalligkeit:	$\begin{aligned} & >90 \\ & <80 \end{aligned}$	$\begin{aligned} & 97,396 \\ & n=185 \end{aligned}$	$\begin{aligned} & 10095 \\ & n=79 \end{aligned}$	$\begin{aligned} & 65, 日 96 \\ & n=76 \end{aligned}$	93,8 96 $n=128$	90,5 5 $\pi=74$	$\begin{aligned} & 10096 \\ & \mathrm{n}=190 \end{aligned}$	87,5 96 $n=56$	$\begin{aligned} & 93,596 \\ & n=130 \end{aligned}$
Schluck striunger.	Ziel: Auffälligkeit:	$\begin{aligned} & \text { n. b. } \\ & <20 \end{aligned}$	$\begin{aligned} & 21,3 \% \\ & \mathrm{n}=183 \end{aligned}$	$\begin{aligned} & 21,0 \% \\ & \pi=62 \end{aligned}$	$\begin{aligned} & 23,496 \\ & n=64 \end{aligned}$	$\begin{aligned} & 32,89 \\ & n=119 \end{aligned}$	$\begin{aligned} & 30,2 \% \\ & n=53 \end{aligned}$	25,2 96 $n=147$	17,9 \% $n=39$	$\begin{aligned} & 16,1 \% \\ & n=87 \end{aligned}$
VI: Logopudie	Ziel: Auffalligkeit:	$\begin{aligned} & >80 \\ & \times 60 \end{aligned}$	$38,6 \%$ $n=83$	$\begin{aligned} & 94,5 \% \\ & n=39 \end{aligned}$	$\begin{aligned} & 82,8 \% \\ & n=29 \end{aligned}$	97,1 \% $\mathrm{n}=68$	B1,0 \% $n=21$	87,3 \% $n=79$	68,0 \% $n=25$	$\begin{aligned} & 30,6 \% \\ & n=36 \end{aligned}$
VII: Phovig/Ergotherapie	ziel: Auffëlligkeit:	$\begin{aligned} & >90 \\ & \leqslant 70 \end{aligned}$	$\begin{aligned} & 97,7.96 \\ & n=143 \end{aligned}$	$\begin{aligned} & 98,096 \\ & n=51 \end{aligned}$	$\begin{aligned} & 89,996 \\ & n=49 \end{aligned}$	$\begin{aligned} & 100 \% \\ & n=93 \end{aligned}$	$\begin{aligned} & 97,4 \mathrm{~m} \\ & \mathrm{n}=39 \end{aligned}$	$\begin{aligned} & 98,496 \\ & n=122 \end{aligned}$	$\begin{aligned} & 100 \mathrm{x} \\ & \mathrm{n}=33 \end{aligned}$	$\begin{aligned} & 95,596 \\ & n=67 \end{aligned}$

${ }^{1}$ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia;

Introduction - matrices all over

■ Images

- Scientific Computing

- Statistics

IV: Darstellung der birnverserg. Arterien	Ziel: Auffalligkeit:	$\begin{aligned} & >90 \\ & <80 \end{aligned}$	$\begin{aligned} & 97,3.96 \\ & n=185 \end{aligned}$	10095 $n=79$	65, 日 96 $n=76$	$\begin{aligned} & 93,996 \\ & n=128 \end{aligned}$	90,5 \% $n=74$	$\begin{aligned} & 100 \% \\ & n=190 \end{aligned}$	87,5 96 $n=56$	93,5 96 $n=130$
Schluck striunger.	Ziel: Auffälligkeit:	$\begin{aligned} & \text { n. } b . \\ & <20 \end{aligned}$	$\begin{aligned} & 21,3 \% \\ & n=183 \end{aligned}$	$\begin{aligned} & 21,09 \\ & \mathrm{n}=62 \end{aligned}$	$\begin{aligned} & 23,496 \\ & n=64 \end{aligned}$	$\begin{aligned} & 32,8 \% \\ & \mathrm{n}=119 \end{aligned}$	$\begin{aligned} & 30,2 \% \\ & n=53 \end{aligned}$	$\begin{aligned} & 25,296 \\ & n=147 \end{aligned}$	17,99 $n=39$	$16,1 \%$ $\mathrm{n}=87$
VI: Logopadie	Ziel: Auffalligkeit:	$\begin{aligned} & \times 80 \\ & \times 60 \end{aligned}$	$38,6 \%$ $\mathrm{n}=83$	$94,5 \%$ $\mathrm{n}=39$	$\begin{aligned} & 82,8 \% \\ & n=29 \end{aligned}$	$\begin{aligned} & 97,1 \% \\ & n=68 \end{aligned}$	B1,0 \% $n=21$	$\begin{aligned} & 87,3 \% \\ & n=79 \end{aligned}$	68,0 \% $n=25$	$30,6 \%$ $n=36$
VII: Rhysia/Ergotherapie	ziel: Auffalligkeit:	$\begin{aligned} & >90 \\ & \leqslant 70 \end{aligned}$	97, 7 .96 $n=143$	98, ㅁ 9 $n=51$	$\begin{aligned} & 89,996 \\ & n=49 \end{aligned}$	$\begin{aligned} & 10096 \\ & n=93 \end{aligned}$	$\begin{aligned} & 97,49 \\ & n=39 \end{aligned}$	$\begin{aligned} & 98,496 \\ & n=129 \end{aligned}$	100% $n=33$	95,596 $n=67$

■ Computer Science

The Internet Graph ${ }^{1}$

${ }^{1}$ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia;

Introduction - Why approximate?

Introduction - Why approximate?

Measurements fail to satisfy expectation:

Introduction - Why approximate?

Measurements fail to satisfy expectation:

	A	B	C
A	0	3	8
B	2.8	0	4
C	7.9	4.1	0

Introduction - Why approximate?

Measurements fail to satisfy expectation:

	A	B	C
A	0	3	8
B	2.8	0	4
C	7.9	4.1	0

	A	B	C
A	0	3	7.5
B	3	0	4.5
C	7.5	4.5	0

$A C \neq C A$ and $A C>A B+B C!$

Introduction - Why approximate?

Measurements fail to satisfy expectation:

	A	B	C
A	0	3	8
B	2.8	0	4
C	7.9	4.1	0

	A	B	C
A	0	3	7.5
B	3	0	4.5
C	7.5	4.5	0

$A C \neq C A$ and $A C>A B+B C!$
Rounding errors, noise confound:
Expected symmetric, orthogonal, real, posdef, etc., but obtained something else!

Introduction - Why approximate?

Algorithm requires input to satisfy a property

Introduction - Why approximate?

Algorithm requires input to satisfy a property
Dimensionality reduction:
■ Reduce storage
■ Numerical benefits
■ Expose structure
■ Enable visualization
■ Easier analysis
■ E.g., for face recognition

Introduction - Why approximate?

Algorithm requires input to satisfy a property
Dimensionality reduction:

Hires (3MB)

Lores (3KB!)

Introduction - Why approximate?

Discover structure:

Introduction - Why approximate?

Discover structure:

Introduction - Why approximate?

Discover structure:

Introduction - Why approximate?

For $€ €$ reasons!

Introduction - Why approximate?

For $€ €$ reasons!

- Netflix million-\$ prize problem!
- Typical matrix completion problem

Introduction - Why approximate?

For $€ €$ reasons!

- Netflix million-\$ prize problem!

■ Typical matrix completion problem
■ Input: matrix \boldsymbol{A} with several missing entries
■ "Predict" missing entries to "complete" the matrix

Introduction - Why approximate?

For $€ €$ reasons!

- Netflix million-\$ prize problem!
- Typical matrix completion problem

■ Input: matrix \boldsymbol{A} with several missing entries
■ "Predict" missing entries to "complete" the matrix
■ Netflix: movies x users matrix; available entries were ratings given to movies by users
■ Task was to predict missing entries, 10\% better than Netflix's inhouse system

Introduction - Why approximate?

For $€ €$ reasons!

- Netflix million-\$ prize problem!
- Typical matrix completion problem

■ Input: matrix \boldsymbol{A} with several missing entries
■ "Predict" missing entries to "complete" the matrix
■ Netflix: movies x users matrix; available entries were ratings given to movies by users
■ Task was to predict missing entries, 10\% better than Netflix's inhouse system
■ Winners, and most top-performing methods: ultimately based on matrix approximation ideas!

Preliminaries

Introduction - preliminary concepts

Suppose we wish to approx. matrix \boldsymbol{A} by $\hat{\boldsymbol{A}}$. Ideally, $\hat{\boldsymbol{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\boldsymbol{A}} \in \Omega$)?

Introduction - preliminary concepts

Suppose we wish to approx. matrix \boldsymbol{A} by $\hat{\boldsymbol{A}}$. Ideally, $\hat{\boldsymbol{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\boldsymbol{A}} \in \Omega$)?

First define nearest!

Introduction - preliminary concepts

Suppose we wish to approx. matrix \boldsymbol{A} by $\hat{\boldsymbol{A}}$. Ideally, $\hat{\boldsymbol{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\boldsymbol{A}} \in \Omega$)?

First define nearest!
We measure "distance" between two matrices using Δ

$$
\Delta(\boldsymbol{A}, \hat{\boldsymbol{A}})
$$

Introduction - preliminary concepts

Suppose we wish to approx. matrix \boldsymbol{A} by $\hat{\boldsymbol{A}}$. Ideally, $\hat{\boldsymbol{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\boldsymbol{A}} \in \Omega$)?

First define nearest!
We measure "distance" between two matrices using Δ

$$
\Delta(\boldsymbol{A}, \hat{\boldsymbol{A}})
$$

"Nearest" means: $\hat{\boldsymbol{A}} \in \Omega$ having smallest Δ value

Introduction - preliminary concepts

Suppose we wish to approx. matrix \boldsymbol{A} by $\hat{\boldsymbol{A}}$. Ideally, $\hat{\boldsymbol{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\boldsymbol{A}} \in \Omega$)?

First define nearest!
We measure "distance" between two matrices using Δ

$$
\Delta(\boldsymbol{A}, \hat{\boldsymbol{A}})
$$

"Nearest" means: $\hat{\boldsymbol{A}} \in \Omega$ having smallest Δ value Commonly used: $\Delta(\mathbf{A}, \widehat{\boldsymbol{A}})=\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|$

Digression: Matrix Norms

An (operator) norm of a matrix \boldsymbol{A} is defined as

$$
\|\boldsymbol{A}\|=\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|
$$

Example: Maximum singular value, $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$

Digression: Matrix Norms

An (operator) norm of a matrix \boldsymbol{A} is defined as

$$
\|\boldsymbol{A}\|=\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|
$$

Example: Maximum singular value, $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$
The Frobenius norm $\|\boldsymbol{A}\|_{\mathrm{F}}$ is defined as

$$
\|\boldsymbol{X}\|_{\mathrm{F}}=\sqrt{\sum_{i j} x_{i j}^{2}}
$$

Digression: Matrix Norms

An (operator) norm of a matrix \boldsymbol{A} is defined as

$$
\|\boldsymbol{A}\|=\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|
$$

Example: Maximum singular value, $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$
The Frobenius norm $\|\boldsymbol{A}\|_{F}$ is defined as

$$
\|\boldsymbol{X}\|_{\mathrm{F}}=\sqrt{\sum_{i j} x_{i j}^{2}}
$$

I. Exercise: prove $\|\boldsymbol{X}\|_{F}^{2}=\operatorname{Tr}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)$ where $\operatorname{Tr}(■) \triangleq \sum_{i} \boldsymbol{■}_{i j}$ II. Bonus: verify that $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$

Digression: Matrix Norms

An (operator) norm of a matrix \boldsymbol{A} is defined as

$$
\|\boldsymbol{A}\|=\max _{\|\boldsymbol{x}\|=1}\|\boldsymbol{A} \boldsymbol{x}\|
$$

Example: Maximum singular value, $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$
The Frobenius norm $\|\boldsymbol{A}\|_{F}$ is defined as

$$
\|\boldsymbol{X}\|_{\mathrm{F}}=\sqrt{\sum_{i j} x_{i j}^{2}}
$$

I. Exercise: prove $\|\boldsymbol{X}\|_{F}^{2}=\operatorname{Tr}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)$ where $\operatorname{Tr}(■) \triangleq \sum_{i} \boldsymbol{■}_{i j}$ II. Bonus: verify that $\sigma_{1}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}$

We will mostly use the Frobenius norm for convenience

Warmup example

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{\mathrm{F}} \quad \text { s.t. } \quad \hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}
$$

Warmup example

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}
$$

Solution: FaHo55

$\hat{\boldsymbol{A}}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2$. To verify, do the following:
1 Let \boldsymbol{X} be any $n \times n$ symmetric matrix
2 Prove that $\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{F}$

Warmup example

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}
$$

Solution: FaHo55

$\hat{\boldsymbol{A}}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2$. To verify, do the following:
1 Let \boldsymbol{X} be any $n \times n$ symmetric matrix
2 Prove that $\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{F}$

$$
\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{\mathrm{F}}=\frac{1}{2}\left\|\boldsymbol{A}-\boldsymbol{X}+\boldsymbol{X}^{T}-\boldsymbol{A}^{T}\right\|_{\mathrm{F}}
$$

Warmup example

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}
$$

Solution: FaHo55

$\hat{\boldsymbol{A}}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2$. To verify, do the following:
1 Let \boldsymbol{X} be any $n \times n$ symmetric matrix
2 Prove that $\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{F}$

$$
\begin{aligned}
\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{\mathrm{F}} & =\frac{1}{2}\left\|\boldsymbol{A}-\boldsymbol{X}+\boldsymbol{X}^{T}-\boldsymbol{A}^{T}\right\|_{\mathrm{F}} \\
& \leq \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}}+\frac{1}{2}\left\|(\boldsymbol{X}-\boldsymbol{A})^{T}\right\|_{\mathrm{F}}=\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}},
\end{aligned}
$$

Warmup example

Suppose $\boldsymbol{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}}^{T}=\hat{\boldsymbol{A}}
$$

Solution: FaHo55

$\hat{\boldsymbol{A}}=\left(\boldsymbol{A}+\boldsymbol{A}^{T}\right) / 2$. To verify, do the following:
1 Let \boldsymbol{X} be any $n \times n$ symmetric matrix
2 Prove that $\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{F}$

$$
\begin{aligned}
\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{\mathrm{F}} & =\frac{1}{2}\left\|\boldsymbol{A}-\boldsymbol{X}+\boldsymbol{X}^{T}-\boldsymbol{A}^{T}\right\|_{\mathrm{F}} \\
& \leq \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}}+\frac{1}{2}\left\|(\boldsymbol{X}-\boldsymbol{A})^{T}\right\|_{\mathrm{F}}=\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}}
\end{aligned}
$$

since $\|\boldsymbol{X}\|_{\mathrm{F}}=\left\|\boldsymbol{X}^{T}\right\|_{\mathrm{F}}$.

More challenging example

Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ (we assume throughout $m \geq n$). What is the nearest rank- k matrix, where $k<r=\operatorname{rank}(\boldsymbol{A})$?

More challenging example

Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ (we assume throughout $m \geq n$). What is the nearest rank- k matrix, where $k<r=\operatorname{rank}(\boldsymbol{A})$?

Let $\boldsymbol{B} \in \mathbb{R}^{m \times k}$ and $\boldsymbol{C} \in \mathbb{R}^{k \times n}$. Then, $\operatorname{rank}(\boldsymbol{B C}) \leq k$. And we have the formula from the title slide:

$$
A \approx B C
$$

More challenging example

Suppose $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ (we assume throughout $m \geq n$). What is the nearest rank- k matrix, where $k<r=\operatorname{rank}(\boldsymbol{A})$?

Let $\boldsymbol{B} \in \mathbb{R}^{m \times k}$ and $\boldsymbol{C} \in \mathbb{R}^{k \times n}$. Then, $\operatorname{rank}(\boldsymbol{B C}) \leq k$. And we have the formula from the title slide:

$$
A \approx B C
$$

"Factors" B, C can be computed by solving

$$
\min \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}
$$

But How??

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. There exist orthogonal matrices \boldsymbol{U} and \boldsymbol{V}

$$
\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right), \quad p=\min (m, n)
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0$.

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let $\boldsymbol{A} \in \mathbb{R}^{m \times n}$. There exist orthogonal matrices \boldsymbol{U} and \boldsymbol{V}

$$
\boldsymbol{U}^{T} \boldsymbol{A} \boldsymbol{V}=\operatorname{Diag}\left(\sigma_{1}, \ldots, \sigma_{p}\right), \quad p=\min (m, n)
$$

where $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq 0$.

$$
\boldsymbol{A}_{m \times n}=\boldsymbol{U}_{m \times m}\left[\begin{array}{c}
\Sigma_{n \times n} \\
0
\end{array}\right] \boldsymbol{V}_{n \times n}^{T}
$$

Exercise: $\boldsymbol{A}=\sum_{i} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$
$\left(\boldsymbol{U}=\left[\boldsymbol{u}_{i}\right]\right.$ and $\left.\boldsymbol{V}=\left[\boldsymbol{v}_{i}\right]\right)$

Approximation example: truncated SVD

■ Reveals a lot about the structure of matrix

Approximation example: truncated SVD

■ Reveals a lot about the structure of matrix
■ Makes explicit (algebraically, and numerically) the notions of rank, range space, null space of \boldsymbol{A}.

Approximation example: truncated SVD

■ Reveals a lot about the structure of matrix
■ Makes explicit (algebraically, and numerically) the notions of rank, range space, null space of \boldsymbol{A}.
■ Has numerous applications; for us, interesting because

Approximation example: truncated SVD

■ Reveals a lot about the structure of matrix
■ Makes explicit (algebraically, and numerically) the notions of rank, range space, null space of \boldsymbol{A}.

■ Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let \boldsymbol{A} have the SVD $\mathbf{U} \Sigma \boldsymbol{V}^{\top}$. If $k<\operatorname{rank}(\boldsymbol{A})$ and

$$
\begin{array}{rlrl}
\boldsymbol{A}_{k} & =\sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}, & & \text { then, } \\
\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2} \leq\|\boldsymbol{A}-\boldsymbol{B}\|_{2}, & \text { s.t. } & \operatorname{rank}(\boldsymbol{B}) \leq k \\
\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F} \leq\|\boldsymbol{A}-\boldsymbol{B}\|_{F}, & \text { s.t. } & \operatorname{rank}(\boldsymbol{B}) \leq k .
\end{array}
$$

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank- k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$
2 Let \boldsymbol{B} be any rank- k matrix

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$
2 Let \boldsymbol{B} be any rank- k matrix
3 Prove that $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \geq \sigma_{k+1}$

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank- k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$
2 Let \boldsymbol{B} be any rank- k matrix
3 Prove that $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \geq \sigma_{k+1}$
Since $\operatorname{rank}(\boldsymbol{B})=k$, there are $n-k$ vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq\{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B} \boldsymbol{z}=0$, so

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$
2 Let \boldsymbol{B} be any rank- k matrix
3 Prove that $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \geq \sigma_{k+1}$
Since $\operatorname{rank}(\boldsymbol{B})=k$, there are $n-k$ vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq\{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B} \boldsymbol{z}=0$, so

$$
\|\boldsymbol{A}-\boldsymbol{B}\|_{2}^{2} \geq\|(\boldsymbol{A}-\boldsymbol{B}) \boldsymbol{z}\|_{2}^{2}=\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2}=\sum_{i}^{k+1} \sigma_{i}^{2}\left(\boldsymbol{v}_{i}^{T} \boldsymbol{z}\right)^{2} \geq \sigma_{k+1}^{2}
$$

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank- k approximation to matrix A

Proof: (2-norm).

1 First verify that $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}$
2 Let \boldsymbol{B} be any rank- k matrix
3 Prove that $\|\boldsymbol{A}-\boldsymbol{B}\|_{2} \geq \sigma_{k+1}$
Since $\operatorname{rank}(\boldsymbol{B})=k$, there are $n-k$ vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq\{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B} \boldsymbol{z}=0$, so

$$
\|\boldsymbol{A}-\boldsymbol{B}\|_{2}^{2} \geq\|(\boldsymbol{A}-\boldsymbol{B}) \mathbf{z}\|_{2}^{2}=\|\boldsymbol{A} \boldsymbol{z}\|_{2}^{2}=\sum_{i}^{k+1} \sigma_{i}^{2}\left(\boldsymbol{v}_{i}^{T} \mathbf{z}\right)^{2} \geq \sigma_{k+1}^{2}
$$

We used: $\|\boldsymbol{A} \boldsymbol{z}\|_{2} \leq\|\boldsymbol{A}\|_{2}\|\boldsymbol{z}\|_{2}$

TSVD - Message

If we are seeking a rank- k approximation to \boldsymbol{A}
\square

TSVD - Message

If we are seeking a rank- k approximation to \boldsymbol{A}

TSVD - Message

If we are seeking a rank-k approximation to \boldsymbol{A}

TSVD yields: $\boldsymbol{B}=\boldsymbol{U}_{k} \Sigma_{k}$, and $\boldsymbol{C}=\boldsymbol{V}_{k}^{T}$

Example Problems

1 Truncated SVD, PCA

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion
6 Probabilistic matrix factorization

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion
6 Probabilistic matrix factorization
7 Nearest positive-definite matrix

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion
6 Probabilistic matrix factorization
7 Nearest positive-definite matrix
8 Parallel variants of all of these

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion
6 Probabilistic matrix factorization
7 Nearest positive-definite matrix
8 Parallel variants of all of these
9 Approximate variants

1 Truncated SVD, PCA
2 Nonnegative matrix approximation (aka NMF)
3 Sparsity constrained versions of PCA, NMF
4 Clustering, Co-clustering
5 Matrix Completion
6 Probabilistic matrix factorization
7 Nearest positive-definite matrix
8 Parallel variants of all of these
9 Approximate variants
10 and so on....

Principal component analysis, aka PCA based on TSVD PCA computes top- k eigenvectors (principal components)

TSVD, PCA

Principal component analysis, aka PCA based on TSVD
PCA computes top- k eigenvectors (principal components) Dimensionality reduction; exploratory data analysis;

Principal components account for variance (spread)

Clustering, Co-clustering

Clustering, Co-clustering

Original matrix
a + a + + z \circ z \circ \circ a + a + + - $*$ - $*$ $*$ - $*$ - $*$ $*$ z \circ z \circ \circ

Clustering, Co-clustering

$$
\begin{aligned}
& \text { Clustered matrix } \\
& \begin{array}{|cc|ccc|}
\hline \mathrm{a} & \mathrm{a} & + & + & + \\
\mathrm{z} & \mathrm{z} & \circ & \circ & \circ \\
\mathrm{a} & \mathrm{a} & + & + & + \\
- & - & * & * & * \\
- & - & * & * & * \\
\mathrm{z} & \mathrm{z} & \circ & \circ & \circ \\
\hline
\end{array} \\
& \text { After Clustering and permutation }
\end{aligned}
$$

Clustering, Co-clustering

Clustering, Co-clustering

Let $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ be the input matrix.
We cluster columns of \boldsymbol{X}
Well-known k-means clustering problem can be written as

$$
\min _{\boldsymbol{B}, \boldsymbol{C}} \frac{1}{2}\|\boldsymbol{X}-\boldsymbol{B} \boldsymbol{C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{C}^{T} \boldsymbol{C}=\operatorname{Diag}(\text { sizes })
$$

where $\boldsymbol{B} \in \mathbb{R}^{m \times k}$, and $\boldsymbol{C} \in\{0,1\}^{k \times n}$.

Clustering, Co-clustering

Let $\boldsymbol{X} \in \mathbb{R}^{m \times n}$ be the input matrix.
We cluster columns of \boldsymbol{X}
Well-known k-means clustering problem can be written as

$$
\min _{\boldsymbol{B}, \boldsymbol{C}} \frac{1}{2}\|\boldsymbol{X}-\boldsymbol{B} \boldsymbol{C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{C}^{T} \boldsymbol{C}=\operatorname{Diag}(\text { sizes })
$$

where $\boldsymbol{B} \in \mathbb{R}^{m \times k}$, and $\boldsymbol{C} \in\{0,1\}^{k \times n}$.
Teaser: How would you write a co-clustering problem?

Matrix Completion

Recall the Netflix example.
The general matrix completion task is:
Recover a matrix from a sampling of its entries!

Matrix Completion

Recall the Netflix example.
The general matrix completion task is:
Recover a matrix from a sampling of its entries!
A very nice topic in itself - no time to cover today.

Matrix Completion

Recall the Netflix example.
The general matrix completion task is:
Recover a matrix from a sampling of its entries!
A very nice topic in itself - no time to cover today.
One recent result:
Can perfectly recover most low-rank matrices!

Nearest positive definite

Sometimes one needs to find for a symmetric \boldsymbol{A}

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}} \geq 0
$$

Nearest positive definite

Sometimes one needs to find for a symmetric \boldsymbol{A}

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}} \succeq 0
$$

Solution: BoXi06
$\boldsymbol{A}=\boldsymbol{A}_{+}-\boldsymbol{A}_{-}, \boldsymbol{A}_{+}=\boldsymbol{A}_{+}^{T} \succeq 0, \boldsymbol{A}_{-}=\boldsymbol{A}_{-}^{T} \succeq 0, \boldsymbol{A}_{+} \boldsymbol{A}_{-}=0$. Moreover

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{+}\right\|_{\mathrm{F}}=\left\|\boldsymbol{A}_{-}\right\|_{\mathrm{F}} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}}
$$

for any $\boldsymbol{X} \succeq 0$. (Observe, computing \boldsymbol{A}_{-}enough)

Nearest positive definite

Sometimes one needs to find for a symmetric \boldsymbol{A}

$$
\min \quad\|\boldsymbol{A}-\hat{\boldsymbol{A}}\|_{F} \quad \text { s.t. } \quad \hat{\boldsymbol{A}} \succeq 0
$$

Solution: BoXi06
$\boldsymbol{A}=\boldsymbol{A}_{+}-\boldsymbol{A}_{-}, \boldsymbol{A}_{+}=\boldsymbol{A}_{+}^{T} \succeq 0, \boldsymbol{A}_{-}=\boldsymbol{A}_{-}^{T} \succeq 0, \boldsymbol{A}_{+} \boldsymbol{A}_{-}=0$. Moreover

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{+}\right\|_{\mathrm{F}}=\left\|\boldsymbol{A}_{-}\right\|_{\mathrm{F}} \leq\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathrm{F}}
$$

for any $\boldsymbol{X} \succeq 0$. (Observe, computing \boldsymbol{A}_{-}enough)

Modified Cholesky: $\boldsymbol{A}+\boldsymbol{E}$ with $\|\boldsymbol{E}\|_{2}=O(n)$

Nonnegative matrix approximation (aka NMF)

Say we are seeking a low-rank approx $\boldsymbol{A} \approx \boldsymbol{B C}$
We could invoke SVD - but sometimes not desirable:

Nonnegative matrix approximation (aka NMF)

Say we are seeking a low-rank approx $\boldsymbol{A} \approx \boldsymbol{B C}$
We could invoke SVD - but sometimes not desirable:
■ SVD yields dense \boldsymbol{B} and \boldsymbol{C}

- \boldsymbol{B} and \boldsymbol{C} full of negative numbers, even if $\boldsymbol{A} \geq 0$

■ SVD decomposition might not be that easy to interpret

Nonnegative matrix approximation (aka NMF)

Say we are seeking a low-rank approx $\boldsymbol{A} \approx \boldsymbol{B C}$
We could invoke SVD - but sometimes not desirable:
■ SVD yields dense \boldsymbol{B} and \boldsymbol{C}

- \boldsymbol{B} and \boldsymbol{C} full of negative numbers, even if $\boldsymbol{A} \geq 0$
- SVD decomposition might not be that easy to interpret

So why not impose $\boldsymbol{B} \geq 0, \boldsymbol{C} \geq 0$?

Nonnegative matrix approximation (aka NMF)

Nonnegative matrix approximation (aka NMF)

Nonnegative matrix approximation (aka NMF)

Examples from original Lee/Seung paper on NMA

Other Variants of NMA

■ KL-NMA - very interesting variant - more popular for modeling "co-occurrence" data

- Bregman NMA - examples from literature - spam filtering

■ Sparsity constrained NMA (Hoyer, etc.)

- Local NMA

■ Numerous other variations

Sparsity Constrained Versions

- Sparse PCA
- Semi-discrete decomposition

■ Discrete basis problem
■ Lasso for variable selection
■ Sparse generalized eigenvalue problem
■ Other variants

Algorithms \& Theory

Algorithms: NMA

We consider the NMA problem:

$$
\boldsymbol{A} \approx \boldsymbol{B C} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0
$$

Algorithms: NMA

Measure quality of approximation using Δ : minimize $\Delta(\boldsymbol{A}, \boldsymbol{B C}) \quad$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$

Algorithms: NMA

Measure quality of approximation using Δ : minimize $\Delta(\boldsymbol{A}, \boldsymbol{B C}) \quad$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$

Instantiations: where Δ is
■ \| $\boldsymbol{A}-\boldsymbol{B C} \|_{\mathrm{F}}^{2}$ - least-squares NMA
■ $\|\boldsymbol{A}-\boldsymbol{B C}\|_{1}$ - robust NMA
$\square K L(\boldsymbol{A}, \boldsymbol{B C})$ - relative entropy (KL) NMA
■ $D(\boldsymbol{A}, \boldsymbol{B C})$ - Bregman divergence NMA

Algorithms: NMA

Measure quality of approximation using Δ : minimize $\Delta(\boldsymbol{A}, \boldsymbol{B C}) \quad$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$

Instantiations: where Δ is
■ \|A - BC $\|_{\mathrm{F}}^{2}$ - least-squares NMA
■ $\|\boldsymbol{A}-\boldsymbol{B C}\|_{1}$ - robust NMA
$\square K L(\boldsymbol{A}, \boldsymbol{B C})$ - relative entropy (KL) NMA
■ $D(\boldsymbol{A}, \boldsymbol{B C})$ - Bregman divergence NMA

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\text {F }}^{2}$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable?

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\text {F }}^{2}$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable? Yes!

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\text {F }}^{2}$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable? Yes!
■ Can we find the solution?

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\text {F }}^{2}$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable? Yes!
■ Can we find the solution? Hmmm

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\text {F }}^{2}$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable? Yes!
■ Can we find the solution? Hmmm
■ In general, NMF is NP-Hard (Vavasis 2007)

Least-squares NMA

minimize $\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2} \quad$ s.t. $\quad \boldsymbol{B}, \boldsymbol{C} \geq 0$.

■ Is this problem solvable? Yes!
■ Can we find the solution? Hmmm
■ In general, NMF is NP-Hard (Vavasis 2007)
■ How about merely a locally optimal solution?

Least-squares NMA

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

■ Is this problem solvable? Yes!
■ Can we find the solution? Hmmm
■ In general, NMF is NP-Hard (Vavasis 2007)
■ How about merely a locally optimal solution?
■ Even that cannot be found easily!

NMA Algorithms

■ Hack: "Zero-out" TSVD

- Alternating methods

■ Directly optimizing (won't cover)
■ Online algorithms (won't cover)

NMA Algorithm: Zero-out SVD

Input: \boldsymbol{A}, k

$$
\begin{aligned}
& 1[\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}]=\operatorname{SVD}(\boldsymbol{A}, \boldsymbol{k}) \\
& 2 \boldsymbol{B} \leftarrow \boldsymbol{U}_{k} \Sigma_{k}, \boldsymbol{C} \leftarrow \boldsymbol{V}_{k}^{T} \\
& 3 \boldsymbol{B} \leftarrow \max (0, \boldsymbol{B}), \boldsymbol{C} \leftarrow \max (0, \boldsymbol{C})
\end{aligned}
$$

Advantages: Simple, deterministic Disadvantages: could be slow, no theoretical guarantees, solution can be really bad!

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent
1 Initialize $\boldsymbol{B}^{0}, t \leftarrow 0$

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize $\boldsymbol{B}^{0}, t \leftarrow 0$
2 Compute $\boldsymbol{C}^{t+1} \quad$ s.t. $\Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right) \leq \Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t}\right)$

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize $\boldsymbol{B}^{0}, t \leftarrow 0$
2 Compute $\boldsymbol{C}^{t+1} \quad$ s.t. $\Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right) \leq \Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t}\right)$
3 Compute \boldsymbol{B}^{t+1} s.t. $\Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right) \leq \Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right)$

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize $\boldsymbol{B}^{0}, t \leftarrow 0$
2 Compute $\boldsymbol{C}^{t+1} \quad$ s.t. $\Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right) \leq \Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t}\right)$
3 Compute \boldsymbol{B}^{t+1} s.t. $\Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right) \leq \Delta\left(\boldsymbol{A}, \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right)$
$4 t \leftarrow t+1$, and repeat until stopping criteria met.

$$
\begin{gathered}
\text { For least-squares NMA } \\
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2}
\end{gathered}
$$

Alternating least-squares

Alternating Least Squares computes

$$
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}}\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2}
$$

Alternating least-squares

Alternating Least Squares computes

$$
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}}\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; \quad \quad \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C})
$$

Alternating least-squares

Alternating Least Squares computes

$$
\begin{array}{lll}
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C}) \\
\boldsymbol{B}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B C}^{t+1}\right\|_{\mathrm{F}}^{2} ; &
\end{array}
$$

Alternating least-squares

Alternating Least Squares computes

$$
\begin{array}{lll}
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C}) \\
\boldsymbol{B}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B C}^{t+1}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{B}^{t+1} \leftarrow \max (0, \boldsymbol{B})
\end{array}
$$

Alternating least-squares

Alternating Least Squares computes

$$
\begin{array}{lll}
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C}) \\
\boldsymbol{B}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B C}^{t+1}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{B}^{t+1} \leftarrow \max (0, \boldsymbol{B})
\end{array}
$$

ALS is fast, simple, often effective, but ...

Alternating least-squares

Alternating Least Squares computes

$$
\begin{array}{lll}
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C}) \\
\boldsymbol{B}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\boldsymbol{F}}^{2} ; & \boldsymbol{B}^{t+1} \leftarrow \max (0, \boldsymbol{B})
\end{array}
$$

ALS is fast, simple, often effective, but ...

© © Bad News!

Alternating least-squares

Alternating Least Squares computes

$$
\begin{array}{lll}
\boldsymbol{C}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} ; & \boldsymbol{C}^{t+1} \leftarrow \max (0, \boldsymbol{C}) \\
\boldsymbol{B}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\boldsymbol{F}}^{2} ; & \boldsymbol{B}^{t+1} \leftarrow \max (0, \boldsymbol{B})
\end{array}
$$

ALS is fast, simple, often effective, but ...

$$
\begin{gathered}
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2} \\
\text { is NOT guaranteed! }
\end{gathered}
$$

Alternating NNLS

"Simple" fix is to instead compute

$$
\boldsymbol{C}^{t+1}=\underset{\sim}{\operatorname{argmin}}\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{C} \geq 0
$$

Alternating NNLS

"Simple" fix is to instead compute

$$
\begin{array}{llll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{C} \geq 0 \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{B} \geq 0
\end{array}
$$

Alternating NNLS

"Simple" fix is to instead compute

$$
\begin{array}{llll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{C} \geq 0 \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{B} \geq 0
\end{array}
$$

Advantages: Descent is guaranteed; even convergence to local-min!

Alternating NNLS

"Simple" fix is to instead compute

$$
\begin{array}{llll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{C} \geq 0 \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{B} \geq 0
\end{array}
$$

Advantages: Descent is guaranteed; even convergence to local-min!
Disadvantages: More complicated optimization problem, slower than ALS

Alternating NNLS

"Simple" fix is to instead compute

$$
\begin{array}{llll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{C} \geq 0 \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B}}{\operatorname{argmin}} & \left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} & \text { s.t. } & \boldsymbol{B} \geq 0
\end{array}
$$

Advantages: Descent is guaranteed; even convergence to local-min!
Disadvantages: More complicated optimization problem, slower than ALS

How to solve the "argmin"??

Alternating NNLS - subproblem

The nonnegative least squares (NNLS) subproblem is

$$
\min _{\boldsymbol{C} \geq 0} \quad \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{F}^{2}
$$

Essentially the same as solving

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2}
$$

Alternating NNLS - subproblem

The nonnegative least squares (NNLS) subproblem is

$$
\min _{\boldsymbol{C} \geq 0} \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}
$$

Essentially the same as solving

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2}
$$

■ Nice, convex optimization problem
■ Numerous algorithms for solving
■ Let us look at the simplest

Background - Gradient Methods

Consider first the unconstrained problem

$$
\min f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2}
$$

Background - Gradient Methods

Consider first the unconstrained problem

$$
\min f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}
$$

Familiar gradient descent

Background - Gradient Methods

Gradient descent: Vector \boldsymbol{c}^{k+1} is chosen as

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}-\alpha_{k} \nabla f\left(\boldsymbol{c}^{k}\right), \quad k=0,1, \ldots
$$

- Step-size $\alpha_{k} \geq 0$

■ Descent direction $-\nabla f\left(\boldsymbol{c}^{k}\right)$

Background - Gradient Methods

Gradient descent: Vector \boldsymbol{c}^{k+1} is chosen as

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}-\alpha_{k} \nabla f\left(\boldsymbol{c}^{k}\right), \quad k=0,1, \ldots
$$

■ Step-size $\alpha_{k} \geq 0$
■ Descent direction $-\nabla f\left(\boldsymbol{c}^{k}\right)$
More generally, Gradient methods iterate as

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}+\alpha_{k} \boldsymbol{d}^{k}, \quad k=0,1, \ldots
$$

where the descent direction is

$$
\boldsymbol{d}^{k} \text { such that }\left\langle\boldsymbol{d}^{k}, \nabla f\left(\boldsymbol{c}^{k}\right)\right\rangle<0
$$

Gradient Methods

Gradient methods

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}+\alpha_{k} \boldsymbol{d}^{k}, \quad k=0,1, \ldots
$$

- Different choices of \boldsymbol{d}^{k}
- Scaled gradient $\boldsymbol{d}^{k}=-\boldsymbol{D}^{k} \nabla f\left(\boldsymbol{c}^{k}\right), \boldsymbol{D}^{k} \succ 0$

■ Note: $\boldsymbol{D}^{k}=\boldsymbol{I}$ gives steepest descent

- Newton's method, conjugate gradients, etc.

Gradient Methods

Gradient methods

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}+\alpha_{k} \boldsymbol{d}^{k}, \quad k=0,1, \ldots
$$

- Different choices of \boldsymbol{d}^{k}
- Scaled gradient $\boldsymbol{d}^{k}=-\boldsymbol{D}^{k} \nabla f\left(\boldsymbol{c}^{k}\right), \boldsymbol{D}^{k} \succ 0$

■ Note: $\boldsymbol{D}^{k}=\boldsymbol{I}$ gives steepest descent
■ Newton's method, conjugate gradients, etc.
■ Different choices of α_{k}

- Limited minimization $\alpha_{k}=\operatorname{argmin}_{0 \leq \alpha \leq s} f\left(\boldsymbol{c}^{k}+\alpha \boldsymbol{d}^{k}\right)$

■ Armijo-line-search, backtracking, etc.

Gradient Methods

Gradient methods

$$
\boldsymbol{c}^{k+1}=\boldsymbol{c}^{k}+\alpha_{k} \boldsymbol{d}^{k}, \quad k=0,1, \ldots
$$

- Different choices of \boldsymbol{d}^{k}
- Scaled gradient $\boldsymbol{d}^{k}=-\boldsymbol{D}^{k} \nabla f\left(\boldsymbol{c}^{k}\right), \boldsymbol{D}^{k} \succ 0$

■ Note: $\boldsymbol{D}^{k}=\boldsymbol{I}$ gives steepest descent

- Newton's method, conjugate gradients, etc.

■ Different choices of α_{k}

- Limited minimization $\alpha_{k}=\operatorname{argmin}_{0 \leq \alpha \leq s} f\left(\boldsymbol{c}^{k}+\alpha \boldsymbol{d}^{k}\right)$
- Armijo-line-search, backtracking, etc.

Step-sizes α_{k} chosen to ensure descent

$$
f\left(\boldsymbol{c}^{k+1}\right)<f\left(\boldsymbol{c}^{k}\right)
$$

Gradient Methods - Illustration

(adapted from Bertsekas, Nonlinear Programming)

Gradient Methods - Handling constraints

Our problem is constrained

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

Recall gradient-descent iteration

$$
\boldsymbol{c}^{k+1}=\quad \boldsymbol{c}^{k}-\alpha_{k} \nabla f\left(\boldsymbol{c}^{k}\right), \quad k=0,1, \ldots
$$

Gradient Methods - Handling constraints

Our problem is constrained

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

Replace it with Gradient-Projection!

$$
\boldsymbol{c}^{k+1}=P_{+}\left(\boldsymbol{c}^{k}-\alpha_{k} \nabla f\left(\boldsymbol{c}^{k}\right)\right), \quad k=0,1, \ldots
$$

$P_{+} \boldsymbol{x}=\max (0, \boldsymbol{x}):$ projection to ensure non-negativity

Gradient Methods - Handling constraints

Our problem is constrained

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

Replace it with Gradient-Projection!

$$
\boldsymbol{c}^{k+1}=P_{+}\left(\boldsymbol{c}^{k}-\alpha_{k} \nabla f\left(\boldsymbol{c}^{k}\right)\right), \quad k=0,1, \ldots
$$

$P_{+} \boldsymbol{x}=\max (0, \boldsymbol{x}):$ projection to ensure non-negativity
Note: Step-size α_{k} selected to ensure descent

$$
f\left(\boldsymbol{c}^{k+1}\right)<f\left(\boldsymbol{c}^{k}\right)
$$

Alternating NNLS - summary

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

Alternating NNLS - summary

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{F}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

by alternating

$$
\begin{array}{ll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{C})=\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{B})=\left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2},
\end{array}
$$

Alternating NNLS - summary

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

by alternating

$$
\begin{array}{ll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{C})=\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{\mathrm{F}}^{2} \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{B})=\left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2},
\end{array}
$$

where each of the subproblems is solved (for fixed t) via

$$
\boldsymbol{C}^{k+1}=P_{+}\left(\boldsymbol{C}^{k}-\alpha_{k} \nabla F\left(\boldsymbol{C}^{k}\right)\right), \quad k=0,1, \ldots
$$

Alternating NNLS - summary

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

by alternating

$$
\begin{array}{ll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{C})=\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{F}^{2} \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{B})=\left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2},
\end{array}
$$

where each of the subproblems is solved (for fixed t) via

$$
\boldsymbol{C}^{k+1}=P_{+}\left(\boldsymbol{C}^{k}-\alpha_{k} \nabla F\left(\boldsymbol{C}^{k}\right)\right), \quad k=0,1, \ldots
$$

So are we ready to implement this?

Alternating NNLS - summary

$$
\text { minimize } \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

by alternating

$$
\begin{array}{ll}
\boldsymbol{C}^{t+1}=\underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{C})=\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}\right\|_{F}^{2} \\
\boldsymbol{B}^{t+1}=\underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} & F(\boldsymbol{B})=\left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2},
\end{array}
$$

where each of the subproblems is solved (for fixed t) via

$$
\boldsymbol{C}^{k+1}=P_{+}\left(\boldsymbol{C}^{k}-\alpha_{k} \nabla F\left(\boldsymbol{C}^{k}\right)\right), \quad k=0,1, \ldots
$$

So are we ready to implement this? How to compute $\nabla F\left(\boldsymbol{C}^{k}\right)$?

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

I. Compute $\partial \operatorname{Tr}(\boldsymbol{X} \mathbf{Y}) / \partial \boldsymbol{X}$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

I. Compute $\partial \operatorname{Tr}(\boldsymbol{X} \boldsymbol{Y}) / \partial \boldsymbol{X}$

Recall $\operatorname{Tr}(\boldsymbol{X} \boldsymbol{Y})=\sum_{i j} x_{i j} y_{j i}$. Hence, $\partial \operatorname{Tr}(\boldsymbol{X} \boldsymbol{Y}) / \partial \boldsymbol{X}=\boldsymbol{Y}^{T}$.

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

II. Verify that: $\partial\|\boldsymbol{X}\|_{F}^{2} / \partial \boldsymbol{X}=2 \boldsymbol{X}$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

II. Verify that: $\partial\|\boldsymbol{X}\|_{F}^{2} / \partial \boldsymbol{X}=2 \boldsymbol{X}$

Solution:

Recall that $\|\boldsymbol{X}\|_{\mathrm{F}}^{2}=\operatorname{Tr}\left(\boldsymbol{X}^{T} \boldsymbol{X}\right)$. So,

$$
\frac{\partial\|\boldsymbol{X}\|_{F}^{2}}{\partial \boldsymbol{X}}=\frac{\partial \operatorname{Tr}\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)}{\partial x_{p q}}=\frac{\partial\left(\sum_{i j} x_{i j}^{2}\right)}{\partial x_{p q}}=2 x_{p q} .
$$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

III. Verify that: $\partial \operatorname{Tr}\left(\boldsymbol{X}^{\top} \mathbf{A} \boldsymbol{X}\right) / \partial \boldsymbol{X}=\left(\mathbf{A}+\mathbf{A}^{T}\right) \boldsymbol{X}$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

III. Verify that: $\partial \operatorname{Tr}\left(\boldsymbol{X}^{T} \mathbf{A} \boldsymbol{X}\right) / \partial \boldsymbol{X}=\left(\mathbf{A}+\mathbf{A}^{T}\right) \boldsymbol{X}$

Solution: Brute force

$$
\operatorname{Tr}\left(\boldsymbol{X}^{T} \boldsymbol{A} \boldsymbol{X}\right)=\sum_{i j} x_{i j}(\boldsymbol{A} \boldsymbol{X})_{j i}=\sum_{i j k} x_{i j} a_{j k} x_{k i}
$$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

Exercise: IV.
Let $F(\boldsymbol{C})=\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}$; compute $\partial F / \partial \boldsymbol{C}$

Background - Matrix Derivatives

Derivative of $f: \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ is defined as

$$
\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq\left[\frac{\partial f(\boldsymbol{X})}{\partial x_{p q}}\right]
$$

Exercise: IV.
Let $F(\boldsymbol{C})=\frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}$; compute $\partial F / \partial \boldsymbol{C}$
Solution:

$$
\begin{array}{r}
F(\boldsymbol{C})=\|\boldsymbol{A}\|_{\mathrm{F}}^{2}-2 \operatorname{Tr}\left(\boldsymbol{C} \boldsymbol{A}^{T} \boldsymbol{B}\right)+\operatorname{Tr}\left(\boldsymbol{C}^{T} \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C}\right) \\
\frac{\partial F(\boldsymbol{C})}{\partial \boldsymbol{C}}=-2 \boldsymbol{B}^{T} \boldsymbol{A}+2 \boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C} .
\end{array}
$$

In passing: The Fréchet derivative

Given $f: V \rightarrow W$, the Fréchet differential at point \boldsymbol{X} is the linear-mapping L that satisfies for all $\boldsymbol{E} \in V$ the relation

$$
f(\boldsymbol{X}+\boldsymbol{E})-f(\boldsymbol{X})-L(\boldsymbol{X}, \boldsymbol{E})=o(\|\boldsymbol{E}\|)
$$

The Fréchet derivative $D_{f}(\boldsymbol{X})$ (of f at point \boldsymbol{X}) identified via:

$$
L(\boldsymbol{X}, \boldsymbol{E})=D_{f}(\boldsymbol{X})(\boldsymbol{E})
$$

Can be used to develop matrix calculus formally.

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity
What is the computational complexity per (major) iteration?

Implementation

Exercise: LSNMA
Implement the gradient-projection NMA algorithm

Exercise: Complexity
What is the computational complexity per (major) iteration?

Solution:

A lot! Especially since there might be many (inner) gradient projection iterations for each major iteration.

What to do?

Alternating descent

Idea! Do not insist on minimization

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

$$
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right\|_{F}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2}
$$

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

$$
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \mathbf{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2}
$$

■ For each major (t) iteration, run few inner iterations
■ Each inner iteration descends, so overall descent ensured

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

$$
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2}
$$

■ For each major (t) iteration, run few inner iterations
■ Each inner iteration descends, so overall descent ensured
■ Instead: approximate gradient-projection algorithm

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

$$
\left\|\boldsymbol{A}-\boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\right\|_{\mathrm{F}}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B}^{t} \boldsymbol{C}^{t}\right\|_{\mathrm{F}}^{2}
$$

■ For each major (t) iteration, run few inner iterations
■ Each inner iteration descends, so overall descent ensured
■ Instead: approximate gradient-projection algorithm
There exists a more popular alternating-descent algorithm!

Multiplicative Updates

The Lee \& Seung Algorithm

Lee $\&$ Seung (2000) proposed the following "algorithm"

$$
\begin{aligned}
& \boldsymbol{C}^{\prime} \leftarrow \boldsymbol{C} \odot \frac{\boldsymbol{B}^{T} \boldsymbol{A}}{\boldsymbol{B}^{T} \boldsymbol{B C}} \\
& \boldsymbol{B}^{\prime} \leftarrow \boldsymbol{B} \odot \frac{\boldsymbol{A} \boldsymbol{C}^{\prime T}}{\boldsymbol{B C}^{\prime} \boldsymbol{C}^{\prime T}}
\end{aligned}
$$

This algorithm's simplicity made NMA popular.
Note: $\boldsymbol{A} \odot \boldsymbol{B}=\left[a_{i j} b_{i j}\right]$ - elementwise multiplication

The Lee \& Seung Algorithm

Lee \& Seung (2000) proposed the following "algorithm"

$$
\begin{aligned}
& \boldsymbol{C}^{\prime} \leftarrow \boldsymbol{C} \odot \frac{\boldsymbol{B}^{T} \boldsymbol{A}}{\boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C}} \\
& \boldsymbol{B}^{\prime} \leftarrow \boldsymbol{B} \odot \frac{\boldsymbol{A} \boldsymbol{C}^{\prime T}}{\boldsymbol{B} \boldsymbol{C}^{\prime} \boldsymbol{C}^{\prime T}}
\end{aligned}
$$

This algorithm's simplicity made NMA popular.
Note: $\boldsymbol{A} \odot \boldsymbol{B}=\left[a_{i j} b_{i j}\right]$ - elementwise multiplication
\square Easy to see that nonnegativity respected

The Lee \& Seung Algorithm

Lee \& Seung (2000) proposed the following "algorithm"

$$
\begin{aligned}
& \boldsymbol{C}^{\prime} \leftarrow \boldsymbol{C} \odot \frac{\boldsymbol{B}^{T} \boldsymbol{A}}{\boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C}} \\
& \boldsymbol{B}^{\prime} \leftarrow \boldsymbol{B} \odot \frac{\boldsymbol{A} \boldsymbol{C}^{\prime T}}{\boldsymbol{B} \boldsymbol{C}^{\prime} \boldsymbol{C}^{\prime T}}
\end{aligned}
$$

This algorithm's simplicity made NMA popular.
Note: $\boldsymbol{A} \odot \boldsymbol{B}=\left[a_{i j} b_{i j}\right]$ - elementwise multiplication
■ Easy to see that nonnegativity respected
■ Somewhat harder to prove descent

$$
\left\|\boldsymbol{A}-\boldsymbol{B}^{\prime} \boldsymbol{C}^{\prime}\right\|_{F}^{2} \leq\left\|\boldsymbol{A}-\boldsymbol{B} \boldsymbol{C}^{\prime}\right\|_{F}^{2} \leq\|\boldsymbol{A}-\boldsymbol{B C}\|_{F}^{2}
$$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{lll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{lll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

2 Compute $\boldsymbol{c}^{t+1}=\operatorname{argmin}_{\boldsymbol{c}} g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{ll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

2 Compute $\boldsymbol{c}^{t+1}=\operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
3 Then we have descent

$$
f\left(\boldsymbol{c}^{t+1}\right)
$$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{ll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

2 Compute $\boldsymbol{c}^{t+1}=\operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
3 Then we have descent

$$
f\left(\boldsymbol{c}^{t+1}\right) \stackrel{\text { def }}{\leq} g\left(\boldsymbol{c}^{t+1}, \boldsymbol{c}^{t}\right)
$$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{ll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

2 Compute $\boldsymbol{c}^{t+1}=\operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
3 Then we have descent

$$
f\left(\boldsymbol{c}^{t+1}\right) \stackrel{\text { def }}{\leq} g\left(\boldsymbol{c}^{t+1}, \boldsymbol{c}^{t}\right) \stackrel{\operatorname{argmin}}{\leq} g\left(\boldsymbol{c}^{t}, \boldsymbol{c}^{t}\right)
$$

Multiplicative updates - preliminaries

Let \boldsymbol{c} be an arbitrary column of \boldsymbol{C}. Consider the subproblem:

$$
\min _{\boldsymbol{c} \geq 0} \quad f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{\mathrm{F}}^{2}
$$

A general technique for deriving "descent" methods:
1 Find a function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ that satisfies:

$$
\begin{array}{lll}
g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \geq f(\boldsymbol{c}), & \text { for all } \quad \boldsymbol{c}, \tilde{\boldsymbol{c}} .
\end{array}
$$

2 Compute $\boldsymbol{c}^{t+1}=\operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
3 Then we have descent

$$
f\left(\boldsymbol{c}^{t+1}\right) \stackrel{\text { def }}{\leq} g\left(\boldsymbol{c}^{t+1}, \boldsymbol{c}^{t}\right) \stackrel{\operatorname{argmin}}{\leq} g\left(\boldsymbol{c}^{t}, \boldsymbol{c}^{t}\right) \stackrel{\text { def }}{=} f\left(\boldsymbol{c}^{t}\right)
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$

■ We need to decouple BC - let's see how.

Constructing g

■ Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
■ We need to decouple BC - let's see how.
We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

Non-convex, and a convex set

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2}$ due to $\boldsymbol{B C}$

■ We need to decouple BC - let's see how.
We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

A convex function

Constructing g

■ Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
■ We need to decouple BC - let's see how.
We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
f(\boldsymbol{c})=\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$

■ We need to decouple BC - let's see how.
We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
f(\boldsymbol{c})=\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right) \text {, where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2}
\end{aligned}
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right) \text {, where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}
\end{aligned}
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right) \text {, where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& \stackrel{\operatorname{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Constructing g

- Main difficulty for $f(\boldsymbol{c})=\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B C}\|_{2}^{2}$ due to $\boldsymbol{B C}$
- We need to decouple BC - let's see how.

We exploit that $h(x)=\frac{1}{2} x^{2}$ is a convex function

$$
h\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} h\left(x_{i}\right), \text { where } \lambda_{i} \geq 0, \sum_{i} \lambda_{i}=1
$$

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2} \sum_{i}\left(a_{i}-\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2}=\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} b_{i j} c_{j}\right)^{2} \\
& =\frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i}\left(\sum_{j} \lambda_{i j} b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& \stackrel{\operatorname{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2}-2 a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2} \\
& =g(\boldsymbol{c}, \tilde{\boldsymbol{c}}), \text { where } \lambda_{i j} \text { are convex coeffts }
\end{aligned}
$$

Constructing g

In summary:

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2} \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) & =\frac{1}{2}\|\boldsymbol{a}\|_{2}^{2}-\sum_{i} a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Now we pick $\lambda_{i j}$

Constructing g

In summary:

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2} \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) & =\frac{1}{2}\|\boldsymbol{a}\|_{2}^{2}-\sum_{i} a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Now we pick $\lambda_{i j}$

$$
\lambda_{i j}=\frac{b_{i j} \tilde{c}_{j}}{\sum_{k} b_{i k} \tilde{c}_{k}}=\frac{b_{i j} \tilde{c}_{j}}{\boldsymbol{b}_{i}^{T} \tilde{\boldsymbol{c}}}
$$

Constructing g

In summary:

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2} \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) & =\frac{1}{2}\|\boldsymbol{a}\|_{2}^{2}-\sum_{i} a_{i} \boldsymbol{b}_{i}^{\top} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Now we pick $\lambda_{i j}$

$$
\lambda_{i j}=\frac{b_{i j} \tilde{c}_{j}}{\sum_{k} b_{i k} \tilde{c}_{k}}=\frac{b_{i j} \tilde{c}_{j}}{\boldsymbol{b}_{i}^{T} \tilde{\boldsymbol{c}}}
$$

Exercise: Aux function
Verify that $g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c})$;

Constructing g

In summary:

$$
\begin{aligned}
f(\boldsymbol{c}) & =\frac{1}{2}\|\boldsymbol{a}-\boldsymbol{B} \boldsymbol{c}\|_{2}^{2} \\
g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) & =\frac{1}{2}\|\boldsymbol{a}\|_{2}^{2}-\sum_{i} a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c}+\frac{1}{2} \sum_{i j} \lambda_{i j}\left(b_{i j} c_{j} / \lambda_{i j}\right)^{2}
\end{aligned}
$$

Now we pick $\lambda_{i j}$

$$
\lambda_{i j}=\frac{b_{i j} \tilde{c}_{j}}{\sum_{k} b_{i k} \tilde{c}_{k}}=\frac{b_{i j} \tilde{c}_{j}}{\boldsymbol{b}_{i}^{T} \tilde{\boldsymbol{c}}}
$$

Exercise: Aux function
Verify that $g(\boldsymbol{c}, \boldsymbol{c})=f(\boldsymbol{c})$;
Exercise: Richardson-Lucy
Let $f(\boldsymbol{c})=\sum_{i} a_{i} \log \left(a_{i} /(\boldsymbol{B C})_{i}\right)-a_{i}+(\boldsymbol{B C})_{i}$.
Derive an auxiliary function $g(\boldsymbol{c}, \tilde{\boldsymbol{c}})$ for this $f(\boldsymbol{c})$

Minimizing g
Recall,core step: $\boldsymbol{c}^{t+1}=\operatorname{argmin} g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$ Solve $\partial g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right) / \partial c_{p}=0$

Minimizing g

Recall,core step: $\boldsymbol{c}^{t+1}=\operatorname{argmin} g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
Solve $\partial g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right) / \partial c_{p}=0$

$$
\partial g / \partial c_{p}=-\sum_{i} a_{i} b_{i p}+\sum_{i} b_{i p}\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}^{t}\right) c_{p} / c_{p}^{t}
$$

Minimizing g

Recall,core step: $\boldsymbol{c}^{t+1}=\operatorname{argmin} g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
Solve $\partial g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right) / \partial c_{p}=0$

$$
\partial g / \partial c_{p}=-\sum_{i} a_{i} b_{i p}+\sum_{i} b_{i p}\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}^{t}\right) c_{p} / c_{p}^{t}
$$

Which yields (verify!) : $c_{p}=c_{p}^{t} \frac{\left[\boldsymbol{B}^{T} \boldsymbol{a}\right]_{p}}{\left[\boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C}^{t}\right]_{p}}$

Minimizing g

Recall,core step: $\boldsymbol{c}^{t+1}=\operatorname{argmin} g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right)$
Solve $\partial g\left(\boldsymbol{c}, \boldsymbol{c}^{t}\right) / \partial c_{p}=0$

$$
\partial g / \partial c_{p}=-\sum_{i} a_{i} b_{i p}+\sum_{i} b_{i p}\left(\boldsymbol{b}_{i}^{T} \boldsymbol{c}^{t}\right) c_{p} / c_{p}^{t}
$$

$$
\text { Which yields (verify!) : } c_{p}=c_{p}^{t} \frac{\left[\boldsymbol{B}^{T} \boldsymbol{a}\right]_{p}}{\left[\boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{c}^{t}\right]_{p}}
$$

Extending to matrices, we obtain Lee \& Seung's update

$$
\boldsymbol{C}^{t+1}=\boldsymbol{C}^{t} \odot \frac{\boldsymbol{B}^{T} \boldsymbol{A}}{\boldsymbol{B}^{T} \boldsymbol{B} \boldsymbol{C}^{t}}
$$

Some remarks regarding g

■ We exploited convexity of x^{2}

Some remarks regarding g

- We exploited convexity of x^{2}

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$

Some remarks regarding g

- We exploited convexity of x^{2}

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits $x \log x$

Some remarks regarding g

- We exploited convexity of x^{2}

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits $x \log x$
■ Other choices possible, e.g., by varying $\lambda_{i j}$

Some remarks regarding g

- We exploited convexity of x^{2}

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits $x \log x$
■ Other choices possible, e.g., by varying $\lambda_{i j}$
■ Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms

Some remarks regarding g

- We exploited convexity of x^{2}

■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits $x \log x$
■ Other choices possible, e.g., by varying $\lambda_{i j}$
■ Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms

- Related to d.c. programming

Some remarks regarding g

■ We exploited convexity of x^{2}
■ Expectation Maximization (EM) algorithm exploits convexity of $-\log x$
■ Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits $x \log x$
■ Other choices possible, e.g., by varying $\lambda_{i j}$
■ Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms
■ Related to d.c. programming
■ MM algorithms subject of a separate lecture!

Summary

■ We looked at least-squares NMA

$$
\min \quad \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}, \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

Summary

■ We looked at least-squares NMA

$$
\min \quad \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}, \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0 .
$$

■ We derived two algorithms: (i) Gradient-Projection; (ii) multiplicative updates

Summary

■ We looked at least-squares NMA

$$
\min \quad \frac{1}{2}\|\boldsymbol{A}-\boldsymbol{B C}\|_{\mathrm{F}}^{2}, \quad \text { s.t. } \quad \boldsymbol{B}, \boldsymbol{C} \geq 0
$$

■ We derived two algorithms: (i) Gradient-Projection; (ii) multiplicative updates

Take home message: The methods, techniques that we saw, are general. You can use them for many other problems!

Applications \& Practical Concerns

Applications - example areas

1 Statistics
2 Data mining, Machine learning
3 Signal processing (images, speech, music, etc.)
4 Computer graphics
5 Chemometrics
6 Remote Sensing
7 Scientific computing
8 ...

- Statistics

■ Psychometrics
■ Data Mining, Machine learning
■ Information Retrieval

- Biology, Bioinformatics

■ In general, exploratory data analysis

Bioinformatics - gene microarray analysis

Biologists measure activity (aka gene-expression) of different genes under various conditions (time, temperature, etc.).

Bioinformatics - gene microarray analysis

Biologists measure activity (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using gene microarray

Bioinformatics - gene microarray analysis

Biologists measure activity (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using gene microarray

Bioinformatics - gene microarray analysis

Biologists measure activity (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using gene microarray Activities across numerous "conditions" or experiments We measure an $m \times n(m \gg n)$ genes \times array matrix. Some "cleaning" (pre-processing) etc. needed.

Truncated SVD on this gene-expression matrix is performed.

Bioinformatics－gene microarray analysis

Biologists measure activity（aka gene－expression）of different genes under various conditions（time，temperature，etc．）．

Arrays
Eigenarrays

M6のनHतNNNMMMM OUOUUUOUOUOUOO

Bioinformatics - gene microarray analysis

Biologists measure activity (aka gene-expression) of different genes under various conditions (time, temperature, etc.).

Arrays
EEEEEEEEEE
 ○mbのrinnNNmmmm

Eigenarrays

Arrays
EEEEEEEEEEE EEEEAOEEEGE 5mbのनHतNNNMMMM $000 \cup U O U O O U O U Q O$

Significant "eigengenes" \Rightarrow independent biological processes and experimental artifacts.

NMA

■ Chemometrics
■ Document modeling, text-analysis

- Spam modeling

■ Bioinformatics
■ Music analysis
■ Computer Vision
■ Image processing
■ Remote sensing (hyperspectral imaging)
■ Dimensionality reduction
■ Computer graphics
■ Collaborative filtering
■ Multiframe blind deconvolution

NMA - Text Analysis

■ Dataset: Collection of 3891 documents
■ Each document represented as a 4857 dimensional vector

NMA - Text Analysis

- Dataset: Collection of 3891 documents

■ Each document represented as a 4857 dimensional vector

- Data matrix: $\boldsymbol{A} \in \mathbb{R}_{+}^{4857 \times 3891}$

NMA - Text Analysis

■ Dataset: Collection of 3891 documents
■ Each document represented as a 4857 dimensional vector

- Data matrix: $\boldsymbol{A} \in \mathbb{R}_{+}^{4857 \times 3891}$

■ Three "human" defined categories CISI, CRAN and MED

NMA - Text Analysis

■ Dataset: Collection of 3891 documents
■ Each document represented as a 4857 dimensional vector

- Data matrix: $\boldsymbol{A} \in \mathbb{R}_{+}^{4857 \times 3891}$
- Three "human" defined categories CISI, CRAN and MED

■ NMA: $\boldsymbol{A} \approx \boldsymbol{B C}$, where \boldsymbol{B} has 3 columns - representing "topics"

NMA - Text Analysis

■ Dataset: Collection of 3891 documents
■ Each document represented as a 4857 dimensional vector

- Data matrix: $\boldsymbol{A} \in \mathbb{R}_{+}^{4857 \times 3891}$

■ Three "human" defined categories CISI, CRAN and MED
■ NMA: $\boldsymbol{A} \approx \boldsymbol{B C}$, where \boldsymbol{B} has 3 columns - representing "topics"

CISI	CRAN	MED
retrieval	wing	patients
system	pressure	cells
systems	mach	growth
indexing	supersonic	hormone
scientific	shock	cancer
science	jet	treatment
index	lift	buckling
search	wings	blood
computer	body	cases
document	theory	cell

Image analysis - toy example

"Swimmer" database - 256, 32×32 images [DoSt03]

■ Stick figures showing different configurations of the limbs of a swimmer
■ Data matrix of size 1024×256

Image analysis - toy example

"Swimmer" database - 256, 32×32 images [DoSt03]

■ Stick figures showing different configurations of the limbs of a swimmer

- Data matrix of size 1024×256

■ Decompose the matrix into 1024×17 (17 seemed to be the "true" nonnegative rank)

Image analysis - toy example

Rank-17 decomposition via Lee/Seung's algo Time: 182.4 seconds, Objective: 2.41×10^{7}

Image analysis - toy example

Via more advanced projection algorithm Time: 62.3 seconds, Objective: 6.85×10^{-4}

Part of a face recognition system

■ 143 images from MIT face image database
■ Input matrix $\boldsymbol{A} \in \mathbb{R}_{+}^{9216 \times 143}$

Part of a face recognition system

■ A rank-20 approximation to the input

- The basis vectors (columns of \boldsymbol{B}) approximately correspond to important "parts" describing the faces.

Multiframe blind deconvolution - astronomy

long-time exposure (approx. 1 s)
Problem: Atmospheric turbulence
Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

Multiframe blind deconvolution - astronomy

short-time exposure (approx. 10ms)
Problem: Atmospheric turbulence

Multiframe blind deconvolution - astronomy

real-time video (15 fps)
Problem: Atmospheric turbulences

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

Our model of the video

Our model of the video

$$
\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
\boldsymbol{y}_{1} & \mid & \boldsymbol{y}_{n} \\
\mid & \vdots & \mid
\end{array}\right] \approx\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
\boldsymbol{a}_{1} & \mid & \boldsymbol{a}_{t} \\
\mid & \vdots & \mid
\end{array}\right] \star \boldsymbol{x}
$$

Convolution operation may be written as

$$
a \star x=A x=X a
$$

$$
\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
\boldsymbol{y}_{1} & \mid & \boldsymbol{y}_{n} \\
\mid & \vdots & \mid
\end{array}\right] \approx\left[\begin{array}{ccc}
\mid & \vdots & \mid \\
\boldsymbol{a}_{1} & \mid & \boldsymbol{a}_{t} \\
\mid & \vdots & \mid
\end{array}\right] \star \boldsymbol{x}
$$

Convolution operation may be written as

$$
\begin{aligned}
\boldsymbol{a} \star \boldsymbol{x} & =\boldsymbol{A} \boldsymbol{x}=\boldsymbol{X} \boldsymbol{a} \\
{\left[\begin{array}{c}
\boldsymbol{y}_{1} \\
\vdots \\
\boldsymbol{y}_{t}
\end{array}\right] } & \approx\left[\begin{array}{c}
\boldsymbol{A}_{1} \\
\cdots \\
\boldsymbol{A}_{t}
\end{array}\right] \boldsymbol{x} \\
{\left[\begin{array}{llll}
\boldsymbol{y}_{1} & \boldsymbol{y}_{2} & \cdots & \boldsymbol{y}_{t}
\end{array}\right] } & \approx \boldsymbol{x}\left[\begin{array}{llll}
\boldsymbol{a}_{1} & \boldsymbol{a}_{2} & \cdots & \boldsymbol{a}_{t}
\end{array}\right]
\end{aligned}
$$

$$
Y \approx X A
$$

Multiframe blind deconvolution

We seek to minimize

$$
\frac{1}{2}\|\boldsymbol{Y}-\boldsymbol{X A}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{X}, \boldsymbol{A} \geq 0
$$

Multiframe blind deconvolution

We seek to minimize

$$
\frac{1}{2}\|\boldsymbol{Y}-\boldsymbol{X A}\|_{\mathrm{F}}^{2} \quad \text { s.t. } \quad \boldsymbol{X}, \boldsymbol{A} \geq 0
$$

Note 1: \boldsymbol{X} and \boldsymbol{A} are the unknowns
Note 2: Additional constraints may be present on \boldsymbol{X} or \boldsymbol{A}
Note 3: Looks like an NMA problem (except \boldsymbol{X} or \boldsymbol{A} have special structure due to the convolution $\boldsymbol{a} \star \boldsymbol{x}$)

Double star epsilon lyrae

MFBD Video

Video example

Discussion \& Wrap-up

Summary

1 Introduction to matrix approximation problems

- Background, motivation
- Truncated SVD; its properties

■ List of some popular problems, e.g., NMA
2 Algorithms for NMA
■ Alternating minimization

- Alternating descent
- Gradient Projection
- Multiplicative updates

3 Applications

- Bioinformatics app of SVD

■ Image processing, astronomy, etc. of NMA

Challenges, other stuff

■ Theoretical: Non-convex optimization
■ Analysis, new algorithms, new problems
■ Practical: Large-scale, sparse data
■ Cluster, multi-core, GPU, etc.
■ Efficient SVD (PROPACK, SLEPc, etc.)

- Methods based on random projections

■ Numerous other matrix nearness problems exist

- Tensor approximations

Challenges, other stuff

■ Theoretical: Non-convex optimization
■ Analysis, new algorithms, new problems
■ Practical: Large-scale, sparse data
■ Cluster, multi-core, GPU, etc.
■ Efficient SVD (PROPACK, SLEPc, etc.)
■ Methods based on random projections
■ Numerous other matrix nearness problems exist
■ Tensor approximations

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data Analysis on MapReduce by Chao Liu et al.

■ Input matrix A of size $43.9 \mathrm{M} \times 769 \mathrm{M}$; total 4.38×10^{9} nonzeros (1.2×10^{-7} - density)
■ 7 hours per iteration (dedicated cluster of 8 comps)
■ http://research.microsoft.com/pubs/119077/DNMF.pdf

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data Analysis on MapReduce by Chao Liu et al.

■ Input matrix A of size $43.9 \mathrm{M} \times 769 \mathrm{M}$; total 4.38×10^{9} nonzeros (1.2×10^{-7} - density)
■ 7 hours per iteration (dedicated cluster of 8 comps)
■ http://research.microsoft.com/pubs/119077/DNMF.pdf

