

Matrix Approximation Problems

Suvrit Sra EU Regional School, RWTH Aachen April 28, 2010

(MPI für biologische Kybernetik, Tübingen)

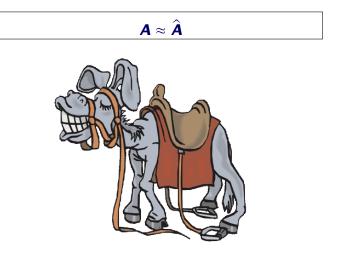
・ロト ・ 四ト ・ ヨト ・ ヨト

What's the course about?

 $\mathbf{A} \approx \widehat{\mathbf{A}}$

V

What's the course about?



Why?

What's the course about?

▲ロト ▲理ト ▲ヨト ▲ヨト → ヨー めんぐ

What's the course about?

 $\mathbf{A} \approx \widehat{\mathbf{A}}$

Not quite!

	Introduction	Why?	Preliminaries	TSVD
What's th	ie course ab	out?		
	Γ			
		$\mathbf{A} \approx \hat{\mathbf{A}}$		
Civen a	n innut matrix	Compute a m	atrix $\hat{\mathbf{A}}$ that satisfies	-

Given an input matrix **A** compute a matrix **A** that satisfies certain desired properties, e.g.,

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

	Introduction	Why?	Preliminaries	TSVD
What's	the course ab	out?		
		• •		

$\mathbf{A} \approx \widehat{\mathbf{A}}$

Given an input matrix **A** compute a matrix \hat{A} that satisfies certain desired properties, e.g.,

symmetry,
$$\hat{A}^T = \hat{A}$$
sparsity, # nnz(\hat{A}) is small
positive definiteness, $\hat{A} \succeq 0$
low-rank, $\hat{A} = BC$
constraints, $\hat{A} \in A$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Matrix Analysis
- 2 Numerical linear algebra
- 3 Computer Science
- 4 High-performance computing
- 5 Numerical optimization
- 6 Statistics
- Data mining & machine learning
- 8 Image Processing, Astronomy, etc.

- 1 Matrix Analysis
- 2 Numerical linear algebra
- 3 Computer Science
- 4 High-performance computing
- 5 Numerical optimization
- 6 Statistics
- Data mining & machine learning
- 8 Image Processing, Astronomy, etc.

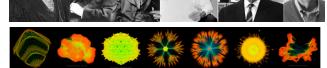
Let's learn something!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Images

¹ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia; $\langle \Box \rangle + \langle \Box \rangle + \langle \Box \rangle + \langle \Xi \rangle + \langle \Xi \rangle = \pm$

Images



IV:	Ziel:	>90	97,3 %		65,8 %	93,8 %	90,5 %		87,5 %	
Darstellung der himversorg- Arterien	Auffälligkeit:	<80	n=185		n=76	n=128	n=74		n=56	
v :	Ziel:	n. b.	21,3 %	21,0 %	23,4 %		30,2 %	25,2 %	17,9 %	16,1 %
Schluck- störungen	Auffälligkeit:	<20	n=183	n=62	n=64		n=53	n=147	n=39	n=87
VI:	Ziel:	>80	38,6 %		82,8 %		81,0 %	87,3 %	68,0 %	30,6 %
Logopädie	Auffälligkeit:	<60	n=83		n=29		n=21	n=79	n=25	n=36
VII:	Ziel:	>90	97,7.96		89,8 %					
Physia- /Ergotherapie	Auffälligkeit:	<70	n=143		n=49					

Statistics

¹ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia; $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle \langle \Xi \rangle$

Images

ScientificComputing

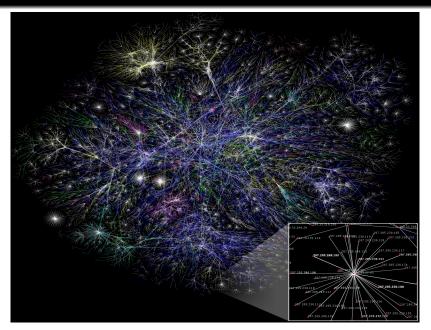
IV:	Ziel:	>90	97,3 %	100 %	65,8 %	93,8 %	90,5 %	100 %	87,5 %	98,5 %
Darstellung der himversorg- Arterien	Auffälligkeit:	<80	n=185		n=76	n=128	n=74		n=56	n=130
v :	Ziel:	n. b.	21,3 %	21,0 %	23,4 %		30,2 %	25,2 %	17,9 %	16,1 %
Schluck- störungen	Auffälligkeit:	<20	n=183	n=62	n=64		n=53	n=147	n=39	n=87
VI:	Ziel:	>80	38,6 %		82,8 %		81,0 %	87,3 %	68,0 %	30,6 %
Logopädie	Auffälligkeit:	<60	n=83		n=29		n=21	n=79	n=25	n=36
VII:	Ziel:	>90	97,7.96		89,8 %					
Physio: /Ergotherapie	Auffälligkeit:	<70	n=143		n=49					

■ Computer Science

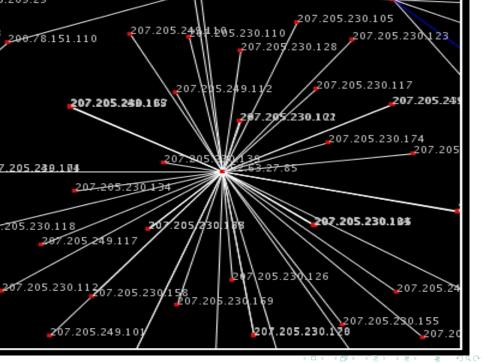
Statistics

The Internet Graph¹

¹ Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis' website; Internet graph from Wikipedia;



・ロト・日本・日本・日本・日本・日本



Measurements fail to satisfy expectation:

Measurements fail to satisfy expectation:

	Α	В	С
Α	0	3	8
В	2.8	0	4
С	7.9	4.1	0

Introduction - Why approximate?

Measurements fail to satisfy expectation:

1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Α	В	С		Α	В	С
					Α			
997 25					В			
	С	7.9	4.1	0	С	7.5	4.5	0

 $AC \neq CA and AC > AB + BC!$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction - Why approximate?

Measurements fail to satisfy expectation:

33 33 33		A	В	С		Α	В	С
	Α	0	3	8			3	
1	В	2.8	0	4	В	3	0	4.5
33 23 33 39 10	С	7.9	4.1	0	С	7.5	4.5	0

$AC \neq CA and AC > AB + BC!$

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but obtained something else!

Algorithm requires input to satisfy a property

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

- Reduce storage
- Numerical benefits
- Expose structure
- Enable visualization
- Easier analysis
- E.g., for face recognition

Algorithm requires input to satisfy a property

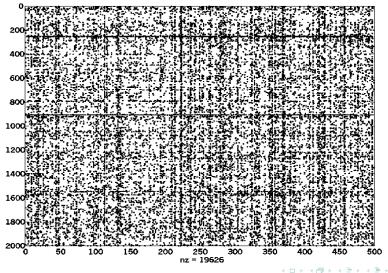
Dimensionality reduction:

Hires (3MB)

Lores (3KB!)

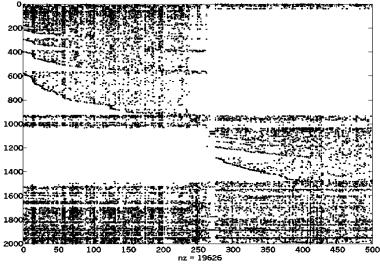
Discover structure:

Discover structure:



~ ~ ~ ~ ~

Discover structure:



≣⇒

- Netflix million-\$ prize problem!
- Typical matrix completion problem

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction - Why approximate?

- Netflix million-\$ prize problem!
- Typical matrix completion problem
- Input: matrix A with several missing entries
- "Predict" missing entries to "complete" the matrix

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Introduction - Why approximate?

- Netflix million-\$ prize problem!
- Typical matrix completion problem
- Input: matrix A with several missing entries
- "Predict" missing entries to "complete" the matrix
- Netflix: movies x users matrix; available entries were ratings given to movies by users
- Task was to predict missing entries, 10% better than Netflix's inhouse system

- Netflix million-\$ prize problem!
- Typical matrix completion problem
- Input: matrix A with several missing entries
- "Predict" missing entries to "complete" the matrix
- Netflix: movies x users matrix; available entries were ratings given to movies by users
- Task was to predict missing entries, 10% better than Netflix's inhouse system
- Winners, and most top-performing methods: ultimately based on *matrix approximation* ideas!

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

Preliminaries

Introduction - preliminary concepts

Suppose we wish to approx. matrix \mathbf{A} by $\hat{\mathbf{A}}$. Ideally, $\hat{\mathbf{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\mathbf{A}} \in \Omega$)?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Introduction - preliminary concepts

Suppose we wish to approx. matrix \mathbf{A} by $\hat{\mathbf{A}}$. Ideally, $\hat{\mathbf{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\mathbf{A}} \in \Omega$)?

First define nearest!

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

TSVD

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Introduction - preliminary concepts

Suppose we wish to approx. matrix \mathbf{A} by $\hat{\mathbf{A}}$. Ideally, $\hat{\mathbf{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\mathbf{A}} \in \Omega$)?

First define *nearest*!

We measure "distance" between two matrices using Δ

 $\Delta(\pmb{A}, \widehat{\pmb{A}})$

Introduction - preliminary concepts

Suppose we wish to approx. matrix \mathbf{A} by $\hat{\mathbf{A}}$. Ideally, $\hat{\mathbf{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\mathbf{A}} \in \Omega$)?

First define *nearest*!

TSVD

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

We measure "distance" between two matrices using Δ

 $\Delta(\mathbf{A}, \widehat{\mathbf{A}})$

"Nearest" means: $\hat{\mathbf{A}} \in \Omega$ having smallest Δ value

Introduction - preliminary concepts

Suppose we wish to approx. matrix \mathbf{A} by $\hat{\mathbf{A}}$. Ideally, $\hat{\mathbf{A}}$ is the "nearest" matrix satisfying a desired property (eg. $\hat{\mathbf{A}} \in \Omega$)?

First define *nearest*!

We measure "distance" between two matrices using Δ

 $\Delta(\mathbf{A}, \widehat{\mathbf{A}})$

"Nearest" means: $\hat{\mathbf{A}} \in \Omega$ having smallest Δ value

Commonly used: $\Delta(\mathbf{A}, \hat{\mathbf{A}}) = \|\mathbf{A} - \hat{\mathbf{A}}\|$

・ロト・西ト・ヨト・ヨト・日・シック・

TSVD

An (operator) *norm* of a matrix **A** is defined as

 $\|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Example: Maximum singular value, $\sigma_1(\mathbf{A}) = \|\mathbf{A}\|_2$

Digression: Matrix Norms

An (operator) *norm* of a matrix **A** is defined as

 $\|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$

Example: Maximum singular value, $\sigma_1(\mathbf{A}) = \|\mathbf{A}\|_2$

The *Frobenius norm* $\|\mathbf{A}\|_{F}$ is defined as

$$\|\boldsymbol{X}\|_{\mathsf{F}} = \sqrt{\sum_{ij} x_{ij}^2}$$

Digression: Matrix Norms

An (operator) *norm* of a matrix **A** is defined as

 $\|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$

Example: Maximum singular value, $\sigma_1(\mathbf{A}) = \|\mathbf{A}\|_2$

The *Frobenius norm* $\|\mathbf{A}\|_{F}$ is defined as

$$\|\boldsymbol{X}\|_{\mathsf{F}} = \sqrt{\sum_{ij} x_{ij}^2}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

I. Exercise: prove $\|\boldsymbol{X}\|_{\mathsf{F}}^2 = \mathsf{Tr}(\boldsymbol{X}^T\boldsymbol{X})$ where $\mathsf{Tr}(\blacksquare) \triangleq \sum_i \blacksquare_{ii} \mathsf{II}$. Bonus: verify that $\sigma_1(\boldsymbol{A}) = \|\boldsymbol{A}\|_2$

Digression: Matrix Norms

An (operator) *norm* of a matrix **A** is defined as

 $\|\boldsymbol{A}\| = \max_{\|\boldsymbol{x}\|=1} \|\boldsymbol{A}\boldsymbol{x}\|$

Example: Maximum singular value, $\sigma_1(\mathbf{A}) = \|\mathbf{A}\|_2$

The *Frobenius norm* $\|\mathbf{A}\|_{F}$ is defined as

$$\|\boldsymbol{X}\|_{\mathsf{F}} = \sqrt{\sum_{ij} x_{ij}^2}$$

I. Exercise: prove $\|\boldsymbol{X}\|_{F}^{2} = \text{Tr}(\boldsymbol{X}^{T}\boldsymbol{X})$ where $\text{Tr}(\blacksquare) \triangleq \sum_{i} \blacksquare_{ii}$ II. Bonus: verify that $\sigma_{1}(\boldsymbol{A}) = \|\boldsymbol{A}\|_{2}$

We will mostly use the Frobenius norm for convenience

・ロト・西ト・田・・田・ 日・ のへぐ

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

min $\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F}$ s.t. $\hat{\boldsymbol{A}}^{T} = \hat{\boldsymbol{A}}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}}^{\mathsf{T}} = \hat{\boldsymbol{A}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Solution: FaHo55

 $\hat{\mathbf{A}} = (\mathbf{A} + \mathbf{A}^T)/2$. To verify, do the following:

- 1 Let **X** be any $n \times n$ symmetric matrix
- **2** Prove that $\|\boldsymbol{A} \hat{\boldsymbol{A}}\|_{F} \le \|\boldsymbol{A} \boldsymbol{X}\|_{F}$

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}}^{\mathsf{T}} = \hat{\boldsymbol{A}}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Solution: FaHo55

 $\hat{\mathbf{A}} = (\mathbf{A} + \mathbf{A}^{T})/2$. To verify, do the following:

1 Let **X** be any $n \times n$ symmetric matrix

2 Prove that
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F} \le \|\boldsymbol{A} - \boldsymbol{X}\|_{F}$$

$$\|\boldsymbol{A} - \widehat{\boldsymbol{A}}\|_{\mathsf{F}} = \frac{1}{2}\|\boldsymbol{A} - \boldsymbol{X} + \boldsymbol{X}^{\mathsf{T}} - \boldsymbol{A}^{\mathsf{T}}\|_{\mathsf{F}}$$

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}}^{\mathsf{T}} = \hat{\boldsymbol{A}}$

Solution: FaHo55

 $\hat{\mathbf{A}} = (\mathbf{A} + \mathbf{A}^T)/2$. To verify, do the following:

1 Let **X** be any $n \times n$ symmetric matrix

2 Prove that
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F} \le \|\boldsymbol{A} - \boldsymbol{X}\|_{F}$$

 $\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F} = \frac{1}{2}\|\boldsymbol{A} - \boldsymbol{X} + \boldsymbol{X}^{T} - \boldsymbol{A}^{T}\|_{F}$
 $\le \frac{1}{2}\|\boldsymbol{A} - \boldsymbol{X}\|_{F} + \frac{1}{2}\|(\boldsymbol{X} - \boldsymbol{A})^{T}\|_{F} = \|\boldsymbol{A} - \boldsymbol{X}\|_{F},$

・ロト・西ト・山田・山田・山口

Suppose $\mathbf{A} \in \mathbb{R}^{n \times n}$. What is the nearest symmetric matrix?

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}}^{\mathsf{T}} = \hat{\boldsymbol{A}}$

Solution: FaHo55

 $\hat{\mathbf{A}} = (\mathbf{A} + \mathbf{A}^T)/2$. To verify, do the following:

1 Let **X** be any $n \times n$ symmetric matrix

2 Prove that
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F} \le \|\boldsymbol{A} - \boldsymbol{X}\|_{F}$$

 $\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{F} = \frac{1}{2}\|\boldsymbol{A} - \boldsymbol{X} + \boldsymbol{X}^{T} - \boldsymbol{A}^{T}\|_{F}$
 $\le \frac{1}{2}\|\boldsymbol{A} - \boldsymbol{X}\|_{F} + \frac{1}{2}\|(\boldsymbol{X} - \boldsymbol{A})^{T}\|_{F} = \|\boldsymbol{A} - \boldsymbol{X}\|_{F},$

since $\|\boldsymbol{X}\|_{\mathsf{F}} = \|\boldsymbol{X}^{\mathsf{T}}\|_{\mathsf{F}}$.

More challenging example

Suppose $A \in \mathbb{R}^{m \times n}$ (we assume throughout $m \ge n$). What is the nearest rank-*k* matrix, where $k < r = \operatorname{rank}(A)$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

More challenging example

Suppose $A \in \mathbb{R}^{m \times n}$ (we assume throughout $m \ge n$). What is the nearest rank-*k* matrix, where $k < r = \operatorname{rank}(A)$?

Let $B \in \mathbb{R}^{m \times k}$ and $C \in \mathbb{R}^{k \times n}$. Then, rank $(BC) \le k$. And we have the formula from the title slide:

$$A \approx BC$$

Why?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

More challenging example

Suppose $A \in \mathbb{R}^{m \times n}$ (we assume throughout $m \ge n$). What is the nearest rank-*k* matrix, where $k < r = \operatorname{rank}(A)$?

Let $B \in \mathbb{R}^{m \times k}$ and $C \in \mathbb{R}^{k \times n}$. Then, rank $(BC) \le k$. And we have the formula from the title slide:

$A \approx BC$

"Factors" **B**, **C** can be computed by solving

 $\min \frac{1}{2} \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}\|_{\mathsf{F}}^2$

But How??

Recall fundamental matrix *factorization*:

Singular Value Decomposition

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

Recall fundamental matrix *factorization*:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96]) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exist *orthogonal* matrices \mathbf{U} and \mathbf{V} $\mathbf{U}^T \mathbf{A} \mathbf{V} = \text{Diag}(\sigma_1, \dots, \sigma_p), \quad p = \min(m, n),$ where $\sigma_1 \ge \sigma_2 \ge \dots \ge 0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → □ ◆○へ⊙

Recall fundamental matrix *factorization*:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96]) Let $\mathbf{A} \in \mathbb{R}^{m \times n}$. There exist *orthogonal* matrices \mathbf{U} and \mathbf{V} $\boldsymbol{U}^T \boldsymbol{A} \boldsymbol{V} = \text{Diag}(\sigma_1, \dots, \sigma_p), \quad \boldsymbol{p} = \min(\boldsymbol{m}, \boldsymbol{n}),$ where $\sigma_1 \geq \sigma_2 \geq \cdots \geq 0$. $\boldsymbol{A}_{m\times n} = \boldsymbol{U}_{m\times m} \begin{vmatrix} \boldsymbol{\Sigma}_{n\times n} \\ \boldsymbol{0} \end{vmatrix} \boldsymbol{V}_{n\times n}^{T}$ Exercise: $\mathbf{A} = \sum_{i} \sigma_{i} \boldsymbol{u}_{i} \boldsymbol{v}_{i}^{T}$ $(\boldsymbol{U} = [\boldsymbol{u}_i] \text{ and } \boldsymbol{V} = [\boldsymbol{v}_i])$

うしん 同一人用 イモヤ (四) イロ・

Reveals a lot about the structure of matrix

- Reveals a lot about the structure of matrix
- Makes explicit (algebraically, and numerically) the notions of *rank*, *range space*, *null space* of *A*.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

- Reveals a lot about the structure of matrix
- Makes explicit (algebraically, and numerically) the notions of *rank*, *range space*, *null space* of *A*.
- Has numerous applications; for us, interesting because

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

- Reveals a lot about the structure of matrix
- Makes explicit (algebraically, and numerically) the notions of rank, range space, null space of A.
- Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let **A** have the SVD $U\Sigma V^T$. If $k < \operatorname{rank}(A)$ and

$$\mathbf{A}_k = \sum_{i=1}^k \sigma_i \mathbf{u}_i \mathbf{v}_i^T, \quad \text{then,}$$

$$\|\boldsymbol{A} - \boldsymbol{A}_k\|_2 \le \|\boldsymbol{A} - \boldsymbol{B}\|_2, \quad s.t. \quad \operatorname{rank}(\boldsymbol{B}) \le k$$
$$\|\boldsymbol{A} - \boldsymbol{A}_k\|_E \le \|\boldsymbol{A} - \boldsymbol{B}\|_E, \quad s.t. \quad \operatorname{rank}(\boldsymbol{B}) \le k.$$

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that $\|\mathbf{A} - \mathbf{A}_k\|_2 = \sigma_{k+1}$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

- **1** First verify that $\|\mathbf{A} \mathbf{A}_k\|_2 = \sigma_{k+1}$
- 2 Let **B** be any rank-k matrix

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Truncated SVD (TSVD) - Proof Sketch

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

- **1** First verify that $\|\mathbf{A} \mathbf{A}_k\|_2 = \sigma_{k+1}$
- 2 Let B be any rank-k matrix
- **3** Prove that $\|\boldsymbol{A} \boldsymbol{B}\|_2 \ge \sigma_{k+1}$

Prove: TSVD yields "best" Rank-k approximation to matrix A

Whv?

Proof: (2-norm).

- **1** First verify that $\|\mathbf{A} \mathbf{A}_k\|_2 = \sigma_{k+1}$
- 2 Let B be any rank-k matrix
- **3** Prove that $\|\mathbf{A} \mathbf{B}\|_2 \ge \sigma_{k+1}$

Since rank(\boldsymbol{B}) = k, there are n - k vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq \{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B}\boldsymbol{z} = 0$, so

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

- **1** First verify that $\|\mathbf{A} \mathbf{A}_k\|_2 = \sigma_{k+1}$
- 2 Let **B** be any rank-k matrix
- **3** Prove that $\|\mathbf{A} \mathbf{B}\|_2 \ge \sigma_{k+1}$

Since rank(\boldsymbol{B}) = k, there are n - k vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq \{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B}\boldsymbol{z} = 0$, so

$$\|\boldsymbol{A} - \boldsymbol{B}\|_{2}^{2} \geq \|(\boldsymbol{A} - \boldsymbol{B})\boldsymbol{z}\|_{2}^{2} = \|\boldsymbol{A}\boldsymbol{z}\|_{2}^{2} = \sum_{i}^{k+1} \sigma_{i}^{2} (\boldsymbol{v}_{i}^{T} \boldsymbol{z})^{2} \geq \sigma_{k+1}^{2}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろく⊙

Prove: TSVD yields "best" Rank-k approximation to matrix A

Proof: (2-norm).

- **1** First verify that $\|\mathbf{A} \mathbf{A}_k\|_2 = \sigma_{k+1}$
- 2 Let B be any rank-k matrix
- **3** Prove that $\|\mathbf{A} \mathbf{B}\|_2 \ge \sigma_{k+1}$

Since rank(\boldsymbol{B}) = k, there are n - k vectors that span the null-space $\mathcal{N}(\boldsymbol{B})$. But $\mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1} \neq \{0\}$ (??), so we can pick a unit-norm vector $\boldsymbol{z} \in \mathcal{N}(\boldsymbol{B}) \cap \boldsymbol{V}_{k+1}$. Now $\boldsymbol{B}\boldsymbol{z} = 0$, so

$$\|\boldsymbol{A} - \boldsymbol{B}\|_{2}^{2} \ge \|(\boldsymbol{A} - \boldsymbol{B})\boldsymbol{z}\|_{2}^{2} = \|\boldsymbol{A}\boldsymbol{z}\|_{2}^{2} = \sum_{i}^{k+1} \sigma_{i}^{2} (\boldsymbol{v}_{i}^{T}\boldsymbol{z})^{2} \ge \sigma_{k+1}^{2}$$

We used: $\|\boldsymbol{A}\boldsymbol{z}\|_{2} \le \|\boldsymbol{A}\|_{2} \|\boldsymbol{z}\|_{2}$

・ロト・日本・日本・日本・日本・日本

TSVD - Message

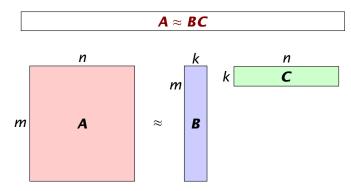
If we are seeking a rank-k approximation to A

$\boldsymbol{A} \approx \boldsymbol{B}\boldsymbol{C}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ● ○ ○ ○ ○

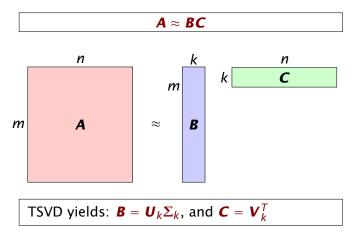
TSVD - Message

If we are seeking a rank-k approximation to A



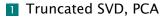
TSVD - Message

If we are seeking a rank-k approximation to A



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Example Problems



Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

- Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)
- **3** Sparsity constrained versions of PCA, NMF

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)
- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)
- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion
- 6 Probabilistic matrix factorization

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)

- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion
- 6 Probabilistic matrix factorization
- 7 Nearest positive-definite matrix

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)

- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion
- 6 Probabilistic matrix factorization
- 7 Nearest positive-definite matrix
- 8 Parallel variants of all of these

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)

- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion
- 6 Probabilistic matrix factorization
- 7 Nearest positive-definite matrix
- 8 Parallel variants of all of these
- 9 Approximate variants

- 1 Truncated SVD, PCA
- 2 Nonnegative matrix approximation (aka NMF)

- 3 Sparsity constrained versions of PCA, NMF
- 4 Clustering, Co-clustering
- 5 Matrix Completion
- 6 Probabilistic matrix factorization
- 7 Nearest positive-definite matrix
- 8 Parallel variants of all of these
- 9 Approximate variants
- 10 and so on....

TSVD, PCA

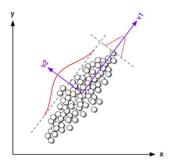
Principal component analysis, aka PCA based on TSVD

PCA computes top-k eigenvectors (principal components)

TSVD, PCA

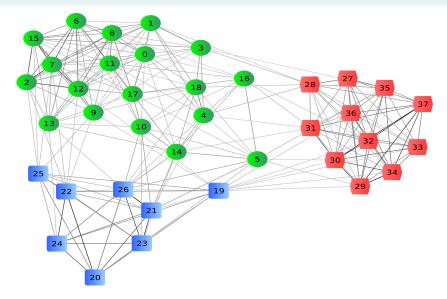
Principal component analysis, aka PCA based on TSVD

PCA computes top-*k* eigenvectors (*principal components*) Dimensionality reduction; exploratory data analysis;



・ロト ・四ト ・ヨト ・ヨ

Principal components account for variance (spread)



Original matrix

a	+	a	+	+
z	0	z	0	0
а	+	а	+	+
_	*	_	*	*
_	*	_	*	*
z	0	z	0	0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

a z	+	+	+
7			
~	0	0	0
а	+	+	+
_	*	*	*
_	*	*	*
z	0	0	0
	a 	a + - * - *	a + + - * * - * *

After clustering and permutation

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

Co-clustered matrix

а	а	+	+	+
а	а	+	+	+
Z	z	0	0	0
Z	z	0	0	0
_	_	*	*	*
_	_	*	*	*
		1		

After co-clustering and permutation

Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be the input matrix.

We cluster *columns* of *X*

Well-known *k-means* clustering problem can be written as

$$\min_{\boldsymbol{B},\boldsymbol{C}} \quad \frac{1}{2} \|\boldsymbol{X} - \boldsymbol{B}\boldsymbol{C}\|_{F}^{2} \quad \text{s.t.} \quad \boldsymbol{C}^{T}\boldsymbol{C} = \text{Diag}(\text{sizes})$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where $\boldsymbol{B} \in \mathbb{R}^{m \times k}$, and $\boldsymbol{C} \in \{0, 1\}^{k \times n}$.

Let $\mathbf{X} \in \mathbb{R}^{m \times n}$ be the input matrix.

We cluster *columns* of *X*

Well-known *k-means* clustering problem can be written as

$$\min_{\boldsymbol{B},\boldsymbol{C}} \quad \frac{1}{2} \|\boldsymbol{X} - \boldsymbol{B}\boldsymbol{C}\|_{\mathsf{F}}^2 \quad \text{s.t.} \quad \boldsymbol{C}^T \boldsymbol{C} = \text{Diag}(\text{sizes})$$

where $\boldsymbol{B} \in \mathbb{R}^{m \times k}$, and $\boldsymbol{C} \in \{0, 1\}^{k \times n}$.

Teaser: How would you write a co-clustering problem?

Matrix Completion

Recall the Netflix example.

The general *matrix completion* task is:

Recover a matrix from a sampling of its entries!

Matrix Completion

Recall the Netflix example.

The general *matrix completion* task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself - no time to cover today.

Matrix Completion

Recall the Netflix example.

The general *matrix completion* task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself – no time to cover today.

One recent result:

Can perfectly recover most low-rank matrices!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Nearest positive definite

Sometimes one needs to find for a symmetric A

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}} \succeq 0$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

Nearest positive definite

Sometimes one needs to find for a symmetric A

min
$$\|\mathbf{A} - \hat{\mathbf{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\mathbf{A}} \succeq 0$

Solution: BoXi06

 $A = A_{+} - A_{-}, A_{+} = A_{+}^{T} \geq 0, A_{-} = A_{-}^{T} \geq 0, A_{+}A_{-} = 0.$ Moreover

$$\|\boldsymbol{A}-\boldsymbol{A}_{+}\|_{\mathsf{F}}=\|\boldsymbol{A}_{-}\|_{\mathsf{F}}\leq\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathsf{F}}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

for any $X \geq 0$. (Observe, computing A₋ enough)

Nearest positive definite

Sometimes one needs to find for a symmetric A

min
$$\|\boldsymbol{A} - \hat{\boldsymbol{A}}\|_{\mathsf{F}}$$
 s.t. $\hat{\boldsymbol{A}} \succeq 0$

Solution: BoXi06

 $A = A_{+} - A_{-}, A_{+} = A_{+}^{T} \succeq 0, A_{-} = A_{-}^{T} \succeq 0, A_{+}A_{-} = 0.$ Moreover

$$\|\boldsymbol{A}-\boldsymbol{A}_{+}\|_{\mathsf{F}}=\|\boldsymbol{A}_{-}\|_{\mathsf{F}}\leq\|\boldsymbol{A}-\boldsymbol{X}\|_{\mathsf{F}}$$

for any $X \geq 0$. (Observe, computing A₋ enough)

Modified Cholesky: $\mathbf{A} + \mathbf{E}$ with $\|\mathbf{E}\|_2 = O(n)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Say we are seeking a *low-rank approx* $\mathbf{A} \approx \mathbf{BC}$

We could invoke SVD - but sometimes not desirable:

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Say we are seeking a *low-rank approx* $\mathbf{A} \approx \mathbf{BC}$

We could invoke SVD - but sometimes not desirable:

- SVD yields dense **B** and **C**
- **B** and **C** full of negative numbers, even if $A \ge 0$
- SVD decomposition might not be that easy to interpret

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

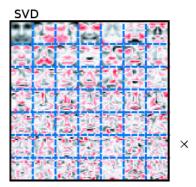
Say we are seeking a *low-rank approx* $\mathbf{A} \approx \mathbf{BC}$

We could invoke SVD - but sometimes not desirable:

- SVD yields dense **B** and **C**
- **B** and **C** full of negative numbers, even if $A \ge 0$
- SVD decomposition might not be that easy to interpret

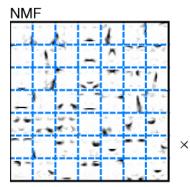
So why not impose $\boldsymbol{B} \ge 0$, $\boldsymbol{C} \ge 0$?

◆□▶ ◆□▶ ▲■▶ ▲■▶ ▲□ ● ● ●

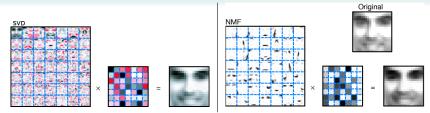


=

・ロト ・四ト ・ヨト ・ヨト ・ヨ



=



Examples from original Lee/Seung paper on NMA

▲□▶▲□▶▲□▶▲□▶ □ のへで

Other Variants of NMA

- KL-NMA very interesting variant more popular for modeling "co-occurrence" data
- Bregman NMA examples from literature spam filtering

- Sparsity constrained NMA (Hoyer, etc.)
- Local NMA
- Numerous other variations

Sparsity Constrained Versions

- Sparse PCA
- Semi-discrete decomposition
- Discrete basis problem
- Lasso for variable selection
- Sparse generalized eigenvalue problem

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Other variants

Algorithms & Theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

We consider the NMA problem:

Measure quality of approximation using Δ :

minimize $\Delta(\boldsymbol{A}, \boldsymbol{B}\boldsymbol{C})$ s.t. $\boldsymbol{B}, \boldsymbol{C} \ge 0$

Measure quality of approximation using Δ :

minimize $\Delta(\boldsymbol{A}, \boldsymbol{B}\boldsymbol{C})$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Instantiations: where Δ is

- **I** $\|\boldsymbol{A} \boldsymbol{B}\boldsymbol{C}\|_{F}^{2}$ least-squares NMA
- ||*A BC*||₁ robust NMA
- KL(A, BC) relative entropy (KL) NMA
- *D*(*A*, *BC*) Bregman divergence NMA

Measure quality of approximation using Δ :

minimize $\Delta(\boldsymbol{A}, \boldsymbol{B}\boldsymbol{C})$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Instantiations: where Δ is

- $\|\boldsymbol{A} \boldsymbol{B}\boldsymbol{C}\|_{F}^{2}$ least-squares NMA
- ||*A BC*||₁ robust NMA
- KL(A, BC) relative entropy (KL) NMA
- *D*(*A*, *BC*) Bregman divergence NMA

minimize
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$$
 s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

Is this problem solvable?

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

Is this problem solvable? Yes!

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

- Is this problem solvable? Yes!
- Can we find the solution?

$\label{eq:minimize} \mbox{minimize} \quad \frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_F^2 \quad \mbox{s.t.} \quad \boldsymbol{B}, \boldsymbol{C} \geq 0.$

- Is this problem solvable? Yes!
- Can we find the solution? Hmmm

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

- Is this problem solvable? Yes!
- Can we find the solution? Hmmm
- In general, NMF is NP-Hard (Vavasis 2007)

Least-squares NMA

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

- Is this problem solvable? Yes!
- Can we find the solution? Hmmm
- In general, NMF is NP-Hard (Vavasis 2007)
- How about merely a locally optimal solution?

Least-squares NMA

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

- Is this problem solvable? Yes!
- Can we find the solution? Hmmm
- In general, NMF is NP-Hard (Vavasis 2007)
- How about merely a locally optimal solution?
- Even that cannot be found easily!

NMA Algorithms

- Hack: "Zero-out" TSVD
- Alternating methods
- Directly optimizing (won't cover)
- Online algorithms (won't cover)

NMA Algorithm: Zero-out SVD

Input: $\boldsymbol{A}, \boldsymbol{k}$ $[\boldsymbol{U}, \boldsymbol{\Sigma}, \boldsymbol{V}] = \text{SVD}(\boldsymbol{A}, \boldsymbol{k})$ $\boldsymbol{B} \leftarrow \boldsymbol{U}_{\boldsymbol{k}} \boldsymbol{\Sigma}_{\boldsymbol{k}}, \boldsymbol{C} \leftarrow \boldsymbol{V}_{\boldsymbol{k}}^{T}$ $\boldsymbol{B} \leftarrow \max(0, \boldsymbol{B}), \boldsymbol{C} \leftarrow \max(0, \boldsymbol{C})$

Advantages: Simple, deterministic Disadvantages: could be slow, no theoretical guarantees, solution can be really bad!

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Generic Iterative Alternating Descent

```
Initialize B^0, t \leftarrow 0
```


Generic Iterative Alternating Descent

1 Initialize
$$B^0$$
, t ← 0

2 Compute \boldsymbol{C}^{t+1} s.t. $\Delta(\boldsymbol{A}, \boldsymbol{B}^t \boldsymbol{C}^{t+1}) \leq \Delta(\boldsymbol{A}, \boldsymbol{B}^t \boldsymbol{C}^t)$

Generic Iterative Alternating Descent

1 Initialize
$$B^0$$
, t ← 0

- **2** Compute \boldsymbol{C}^{t+1} s.t. $\Delta(\boldsymbol{A}, \boldsymbol{B}^t \boldsymbol{C}^{t+1}) \leq \Delta(\boldsymbol{A}, \boldsymbol{B}^t \boldsymbol{C}^t)$
- **3** Compute B^{t+1} s.t. $\Delta(A, B^{t+1}C^{t+1}) \le \Delta(A, B^{t}C^{t+1})$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Generic Iterative Alternating Descent

1 Initialize
$$\mathbf{B}^0$$
, $t \leftarrow 0$
2 Compute \mathbf{C}^{t+1} s.t. $\Delta(\mathbf{A}, \mathbf{B}^t \mathbf{C}^{t+1}) \leq \Delta(\mathbf{A}, \mathbf{B}^t \mathbf{C}^t)$
3 Compute \mathbf{B}^{t+1} s.t. $\Delta(\mathbf{A}, \mathbf{B}^{t+1} \mathbf{C}^{t+1}) \leq \Delta(\mathbf{A}, \mathbf{B}^t \mathbf{C}^{t+1})$
4 $t \leftarrow t+1$, and repeat until stopping criteria met.

For least-squares NMA

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\|_{\mathsf{F}}^2 \le \|\boldsymbol{A} - \boldsymbol{B}^t \boldsymbol{C}^{t+1}\|_{\mathsf{F}}^2 \le \|\boldsymbol{A} - \boldsymbol{B}^t \boldsymbol{C}^t\|_{\mathsf{F}}^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alternating Least Squares computes

$$\boldsymbol{C} = \underset{\boldsymbol{C}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{F}^{2};$$

Alternating Least Squares computes

$$\boldsymbol{C} = \underset{\boldsymbol{C}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathsf{F}}^{2}; \qquad \boldsymbol{C}^{t+1} \leftarrow \max(0, \boldsymbol{C})$$

Alternating Least Squares computes

$$C = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2}; \qquad C^{t+1} \leftarrow \max(0, \mathbf{C})$$
$$B = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2};$$

Alternating Least Squares computes

$$C = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2}; \qquad C^{t+1} \leftarrow \max(0, \mathbf{C})$$
$$B = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2}; \qquad B^{t+1} \leftarrow \max(0, \mathbf{B})$$

Alternating Least Squares computes

$$C = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2}; \qquad C^{t+1} \leftarrow \max(0, \mathbf{C})$$
$$B = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2}; \qquad B^{t+1} \leftarrow \max(0, \mathbf{B})$$

ALS is fast, simple, often effective, but ...

Alternating Least Squares computes

$$C = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2}; \qquad C^{t+1} \leftarrow \max(0, \mathbf{C})$$
$$B = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2}; \qquad B^{t+1} \leftarrow \max(0, \mathbf{B})$$

ALS is fast, simple, often effective, but ...

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Alternating Least Squares computes

$$C = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2}; \qquad C^{t+1} \leftarrow \max(0, \mathbf{C})$$
$$B = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2}; \qquad B^{t+1} \leftarrow \max(0, \mathbf{B})$$

ALS is fast, simple, often effective, but ...

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\|_{\mathsf{F}}^2 \le \|\boldsymbol{A} - \boldsymbol{B}^t \boldsymbol{C}^{t+1}\|_{\mathsf{F}}^2 \le \|\boldsymbol{A} - \boldsymbol{B}^t \boldsymbol{C}^t\|_{\mathsf{F}}^2$$

is NOT guaranteed!

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

"Simple" fix is to instead compute

$$\boldsymbol{C}^{t+1} = \operatorname{argmin}_{\boldsymbol{C}} \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathrm{F}}^{2} \text{ s.t. } \boldsymbol{C} \geq 0$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへぐ

"Simple" fix is to instead compute

$$C^{t+1} = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2} \quad \text{s.t.} \quad \mathbf{C} \ge 0$$
$$\mathbf{B}^{t+1} = \underset{B}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2} \quad \text{s.t.} \quad \mathbf{B} \ge 0$$

・ロト・西・・田・・田・・日・ ひゃぐ

"Simple" fix is to instead compute

$$C^{t+1} = \underset{C}{\operatorname{argmin}} \| \mathbf{A} - \mathbf{B}^{t} \mathbf{C} \|_{F}^{2} \quad \text{s.t.} \quad \mathbf{C} \ge 0$$
$$\mathbf{B}^{t+1} = \underset{\mathbf{B}}{\operatorname{argmin}} \| \|\mathbf{A} - \mathbf{B} \mathbf{C}^{t+1} \|_{F}^{2} \quad \text{s.t.} \quad \mathbf{B} \ge 0$$

Advantages: Descent is guaranteed; even convergence to local-min!

"Simple" fix is to instead compute

$$\boldsymbol{C}^{t+1} = \underset{\boldsymbol{C}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{F}^{2} \quad \text{s.t.} \quad \boldsymbol{C} \ge 0$$
$$\boldsymbol{B}^{t+1} = \underset{\boldsymbol{B}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{F}^{2} \quad \text{s.t.} \quad \boldsymbol{B} \ge 0$$

Advantages: Descent is guaranteed; even convergence to local-min! Disadvantages: More complicated optimization problem, slower than ALS

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

"Simple" fix is to instead compute

$$\boldsymbol{C}^{t+1} = \underset{\boldsymbol{C}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{F}^{2} \quad \text{s.t.} \quad \boldsymbol{C} \ge 0$$
$$\boldsymbol{B}^{t+1} = \underset{\boldsymbol{B}}{\operatorname{argmin}} \quad \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{F}^{2} \quad \text{s.t.} \quad \boldsymbol{B} \ge 0$$

Advantages: Descent is guaranteed; even convergence to local-min! Disadvantages: More complicated optimization problem, slower than ALS

How to solve the "argmin"??

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Alternating NNLS - subproblem

The nonnegative least squares (NNLS) subproblem is

 $\min_{\boldsymbol{C}\geq 0} \quad \frac{1}{2} \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}\|_{\mathsf{F}}^2$

Essentially the same as solving

$$\min_{c\geq 0} \quad f(c) = \frac{1}{2} \| a - Bc \|_2^2$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Alternating NNLS - subproblem

The nonnegative least squares (NNLS) subproblem is

 $\min_{\boldsymbol{C}\geq 0} \quad \frac{1}{2} \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}\|_{F}^{2}$

Essentially the same as solving

$$\min_{c\geq 0} \quad f(c) = \frac{1}{2} \|a - Bc\|_2^2$$

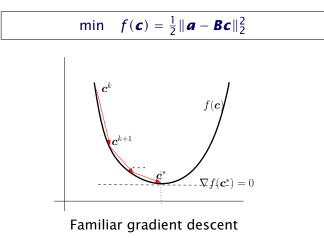
◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

- Nice, convex optimization problem
- Numerous algorithms for solving
- Let us look at the simplest

Consider first the unconstrained problem

min
$$f(c) = \frac{1}{2} \| a - Bc \|_2^2$$

Consider first the unconstrained problem



◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Gradient descent: Vector \boldsymbol{c}^{k+1} is chosen as

$$c^{k+1} = c^k - \alpha_k \nabla f(c^k), \quad k = 0, 1, ...$$

Step-size
$$\alpha_k \ge 0$$

Descent direction $-\nabla f(\mathbf{c}^k)$

Gradient descent: Vector \boldsymbol{c}^{k+1} is chosen as

$$c^{k+1} = c^k - \alpha_k \nabla f(c^k), \quad k = 0, 1, \dots$$

- **Step-size** $\alpha_k \ge 0$
- **Descent direction** $-\nabla f(\mathbf{c}^k)$

More generally, Gradient methods iterate as

$$c^{k+1} = c^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

where the descent direction is

$$d^k$$
 such that $\langle d^k, \nabla f(c^k) \rangle < 0$

・ロト・日本・日本・日本・日本・日本

Gradient Methods

Gradient methods

$$c^{k+1} = c^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Different choices of **d**^k

- Scaled gradient $\boldsymbol{d}^k = -\boldsymbol{D}^k \nabla f(\boldsymbol{c}^k), \, \boldsymbol{D}^k \succ 0$
- Note: $\mathbf{D}^k = \mathbf{I}$ gives steepest descent
- Newton's method, conjugate gradients, etc.

Gradient Methods

Gradient methods

$$c^{k+1} = c^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

Different choices of **d**^k

- Scaled gradient $\boldsymbol{d}^{k} = -\boldsymbol{D}^{k} \nabla f(\boldsymbol{c}^{k}), \, \boldsymbol{D}^{k} \succ 0$
- Note: $\mathbf{D}^k = \mathbf{I}$ gives steepest descent
- Newton's method, conjugate gradients, etc.
- Different choices of α_k
 - Limited minimization $\alpha_k = \operatorname{argmin}_{0 \le \alpha \le s} f(\boldsymbol{c}^k + \alpha \boldsymbol{d}^k)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Armijo-line-search, backtracking, etc.

Gradient Methods

Gradient methods

$$c^{k+1} = c^k + \alpha_k d^k, \quad k = 0, 1, \dots$$

Different choices of **d**^k

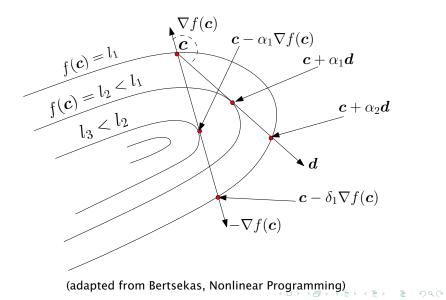
- Scaled gradient $\boldsymbol{d}^{k} = -\boldsymbol{D}^{k} \nabla f(\boldsymbol{c}^{k}), \ \boldsymbol{D}^{k} \succ 0$
- Note: $\mathbf{D}^k = \mathbf{I}$ gives steepest descent
- Newton's method, conjugate gradients, etc.
- **Different choices of** α_k
 - Limited minimization $\alpha_k = \operatorname{argmin}_{0 \le \alpha \le s} f(\mathbf{c}^k + \alpha \mathbf{d}^k)$
 - Armijo-line-search, backtracking, etc.

Step-sizes α_k chosen to ensure *descent*

$$f(\boldsymbol{c}^{k+1}) < f(\boldsymbol{c}^k)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Gradient Methods - Illustration



Gradient Methods - Handling constraints

Our problem is constrained

$$\min_{c \ge 0} \quad f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

Recall gradient-descent iteration

$$\boldsymbol{c}^{k+1} = \boldsymbol{c}^k - \alpha_k \nabla f(\boldsymbol{c}^k)$$
, $k = 0, 1, \dots$

Gradient Methods - Handling constraints

Our problem is constrained

$$\min_{c \ge 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

Replace it with Gradient-Projection!

$$c^{k+1} = P_+(c^k - \alpha_k \nabla f(c^k)), \quad k = 0, 1, \dots$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

 $P_{+}\boldsymbol{x} = \max(0, \boldsymbol{x})$: projection to ensure *non-negativity*

Gradient Methods - Handling constraints

Our problem is constrained

$$\min_{c \ge 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

Replace it with Gradient-Projection!

$$c^{k+1} = P_+(c^k - \alpha_k \nabla f(c^k)), \quad k = 0, 1, \dots$$

 $P_{+}\boldsymbol{x} = \max(0, \boldsymbol{x})$: projection to ensure *non-negativity*

Note: Step-size α_k selected to ensure descent

$$f(\boldsymbol{c}^{k+1}) < f(\boldsymbol{c}^k)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Alternating NNLS - summary

minimize $\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$ s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

Alternating NNLS - summary

minimize
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$$
 s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

by alternating

$$\begin{aligned} \boldsymbol{C}^{t+1} &= \underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{C}) = \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathsf{F}}^{2} \\ \boldsymbol{B}^{t+1} &= \underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{B}) = \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{\mathsf{F}}^{2}, \end{aligned}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Alternating NNLS - summary

minimize
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$$
 s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

by alternating

$$\begin{aligned} \boldsymbol{C}^{t+1} &= \underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{C}) = \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathsf{F}}^{2} \\ \boldsymbol{B}^{t+1} &= \underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{B}) = \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{\mathsf{F}}^{2}, \end{aligned}$$

where each of the subproblems is solved (for fixed t) via

$$C^{k+1} = P_+(C^k - \alpha_k \nabla F(C^k)), \quad k = 0, 1, ...$$

Alternating NNLS - summary

minimize
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$$
 s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

by alternating

$$\begin{aligned} \boldsymbol{C}^{t+1} &= \underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{C}) = \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathsf{F}}^{2} \\ \boldsymbol{B}^{t+1} &= \underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{B}) = \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{\mathsf{F}}^{2}, \end{aligned}$$

where each of the subproblems is solved (for fixed t) via

$$C^{k+1} = P_+(C^k - \alpha_k \nabla F(C^k)), \quad k = 0, 1, \dots$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

So are we ready to implement this?

Alternating NNLS - summary

minimize
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{F}^{2}$$
 s.t. $\boldsymbol{B}, \boldsymbol{C} \geq 0$.

by alternating

$$\begin{aligned} \boldsymbol{C}^{t+1} &= \underset{\boldsymbol{C} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{C}) = \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}\|_{\mathsf{F}}^{2} \\ \boldsymbol{B}^{t+1} &= \underset{\boldsymbol{B} \geq 0}{\operatorname{argmin}} \quad F(\boldsymbol{B}) = \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}^{t+1}\|_{\mathsf{F}}^{2}, \end{aligned}$$

where each of the subproblems is solved (for fixed t) via

$$C^{k+1} = P_+(C^k - \alpha_k \nabla F(C^k)), \quad k = 0, 1, ...$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

So are we ready to implement this? How to compute $\nabla F(\mathbf{C}^k)$?

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

I. Compute $\partial Tr(XY) / \partial X$

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

I. Compute $\partial \text{Tr}(\boldsymbol{X} \boldsymbol{Y}) / \partial \boldsymbol{X}$ Recall $\text{Tr}(\boldsymbol{X} \boldsymbol{Y}) = \sum_{ij} x_{ij} y_{ji}$. Hence, $\partial \text{Tr}(\boldsymbol{X} \boldsymbol{Y}) / \partial \boldsymbol{X} = \boldsymbol{Y}^T$.

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

II. Verify that: $\partial \|\boldsymbol{X}\|_{F}^{2} / \partial \boldsymbol{X} = 2\boldsymbol{X}$

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

II. Verify that: $\partial \|\boldsymbol{X}\|_{F}^{2} / \partial \boldsymbol{X} = 2\boldsymbol{X}$

Solution:

Recall that $\|\boldsymbol{X}\|_{F}^{2} = Tr(\boldsymbol{X}^{T}\boldsymbol{X})$. So,

$$\frac{\partial \|\boldsymbol{X}\|_{\mathsf{F}}^2}{\partial \boldsymbol{X}} = \frac{\partial \mathsf{Tr}(\boldsymbol{X}^T \boldsymbol{X})}{\partial x_{pq}} = \frac{\partial (\sum_{ij} x_{ij}^2)}{\partial x_{pq}} = 2x_{pq}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへぐ

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

III. Verify that: $\partial \text{Tr}(\boldsymbol{X}^T \boldsymbol{A} \boldsymbol{X}) / \partial \boldsymbol{X} = (\boldsymbol{A} + \boldsymbol{A}^T) \boldsymbol{X}$

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

III. Verify that: $\partial \text{Tr}(X^T A X) / \partial X = (A + A^T) X$ Solution: Brute force

$$\mathsf{Tr}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{A}\boldsymbol{X}) = \sum_{ij} x_{ij}(\boldsymbol{A}\boldsymbol{X})_{ji} = \sum_{ijk} x_{ij} a_{jk} x_{ki}$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

Exercise: IV. Let $F(\mathbf{C}) = \frac{1}{2} \|\mathbf{A} - \mathbf{BC}\|_{F}^{2}$; compute $\partial F / \partial \mathbf{C}$

・ロト・四ト・ヨト・ヨト つへぐ

Derivative of $f : \mathbb{R}^{m \times n} \to \mathbb{R}$ is defined as

$$\frac{\partial f(\boldsymbol{X})}{\partial \boldsymbol{X}} \triangleq \left[\frac{\partial f(\boldsymbol{X})}{\partial x_{pq}}\right]$$

Exercise: IV. Let $F(\mathbf{C}) = \frac{1}{2} \|\mathbf{A} - \mathbf{BC}\|_{F}^{2}$; compute $\partial F / \partial \mathbf{C}$ Solution: $F(\mathbf{C}) = \|\mathbf{A}\|_{F}^{2} - 2 \operatorname{Tr}(\mathbf{CA}^{T}\mathbf{B}) + \operatorname{Tr}(\mathbf{C}^{T}\mathbf{B}^{T}\mathbf{BC})$ $\frac{\partial F(\mathbf{C})}{\partial \mathbf{C}} = -2\mathbf{B}^{T}\mathbf{A} + 2\mathbf{B}^{T}\mathbf{BC}.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

In passing: The Fréchet derivative

Given $f: V \rightarrow W$, the *Fréchet differential* at point **X** is the linear-mapping *L* that satisfies for all $\boldsymbol{E} \in V$ the relation

 $f(\boldsymbol{X} + \boldsymbol{E}) - f(\boldsymbol{X}) - L(\boldsymbol{X}, \boldsymbol{E}) = o(\|\boldsymbol{E}\|)$

The *Fréchet derivative* $D_f(\mathbf{X})$ (of f at point \mathbf{X}) identified via:

 $L(\boldsymbol{X}, \boldsymbol{E}) = D_f(\boldsymbol{X})(\boldsymbol{E})$

Can be used to develop matrix calculus formally.

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity

What is the computational complexity per (major) iteration?

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity

What is the computational complexity per (major) iteration?

Solution:

A lot! Especially since there might be many (inner) gradient projection iterations for each major iteration.

(日) (雪) (日) (日) (日)

What to do?

Idea! Do not insist on minimization

Idea! Do not insist on minimization

Recall that we originally wanted *descent*

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1}\boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}^{t}\|_{F}^{2}$$

Idea! Do not insist on minimization

Recall that we originally wanted descent

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1}\boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t}\boldsymbol{C}^{t}\|_{F}^{2}$$

For each major (*t*) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Idea! Do not insist on minimization

Recall that we originally wanted *descent*

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t} \boldsymbol{C}^{t}\|_{F}^{2}$$

- For each major (t) iteration, run few inner iterations
- Each inner iteration descends, so overall descent ensured

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Instead: approximate gradient-projection algorithm

Idea! Do not insist on minimization

Recall that we originally wanted *descent*

$$\|\boldsymbol{A} - \boldsymbol{B}^{t+1} \boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t} \boldsymbol{C}^{t+1}\|_{F}^{2} \leq \|\boldsymbol{A} - \boldsymbol{B}^{t} \boldsymbol{C}^{t}\|_{F}^{2}$$

- For each major (t) iteration, run few inner iterations
- Each inner iteration descends, so overall descent ensured
- Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

Multiplicative Updates

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following "algorithm"

$$C' \leftarrow C \odot \frac{B^{T}A}{B^{T}BC}$$
$$B' \leftarrow B \odot \frac{AC'^{T}}{BC'C'^{T}}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

This algorithm's simplicity made NMA popular.

Note: $\mathbf{A} \odot \mathbf{B} = [a_{ij}b_{ij}]$ - elementwise multiplication

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following "algorithm"

$$C' \leftarrow C \odot \frac{B^{T}A}{B^{T}BC}$$
$$B' \leftarrow B \odot \frac{AC'^{T}}{BC'C'^{T}}.$$

This algorithm's simplicity made NMA popular.

Note: $\mathbf{A} \odot \mathbf{B} = [a_{ij}b_{ij}]$ – elementwise multiplication

Easy to see that nonnegativity respected

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following "algorithm"

$$C' \leftarrow C \odot \frac{B^{T}A}{B^{T}BC}$$
$$B' \leftarrow B \odot \frac{AC'^{T}}{BC'C'^{T}}.$$

This algorithm's simplicity made NMA popular.

Note: $\mathbf{A} \odot \mathbf{B} = [a_{ij}b_{ij}]$ – elementwise multiplication

- Easy to see that nonnegativity respected
- Somewhat harder to prove descent

$$\|\boldsymbol{A} - \boldsymbol{B}'\boldsymbol{C}'\|_{\mathsf{F}}^2 \leq \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}'\|_{\mathsf{F}}^2 \leq \|\boldsymbol{A} - \boldsymbol{B}\boldsymbol{C}\|_{\mathsf{F}}^2$$

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{\boldsymbol{c} \ge 0} \quad f(\boldsymbol{c}) = \frac{1}{2} \|\boldsymbol{a} - \boldsymbol{B}\boldsymbol{c}\|_{\mathrm{F}}^2$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

A general technique for deriving "descent" methods:

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c}), \text{ for all } \boldsymbol{c},$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \ge f(\boldsymbol{c}), \text{ for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}.$$

・ロト・西ト・西ト・西ト・日下

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

1 Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c}), \text{ for all } \boldsymbol{c},$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \ge f(\boldsymbol{c}), \text{ for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}.$$

2 Compute $\boldsymbol{c}^{t+1} = \operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}(\boldsymbol{c}, \boldsymbol{c}^{t})$

・ロト・日本・日本・日本・日本

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

1 Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c}), \text{ for all } \boldsymbol{c},$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \ge f(\boldsymbol{c}), \text{ for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

- 2 Compute $\boldsymbol{c}^{t+1} = \operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}(\boldsymbol{c}, \boldsymbol{c}^{t})$
- 3 Then we have descent

$$f(\boldsymbol{c}^{t+1})$$

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

1 Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c}), \text{ for all } \boldsymbol{c},$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \ge f(\boldsymbol{c}), \text{ for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}.$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

- 2 Compute $\boldsymbol{c}^{t+1} = \operatorname{argmin}_{\boldsymbol{c}} \boldsymbol{g}(\boldsymbol{c}, \boldsymbol{c}^t)$
- 3 Then we have descent

$$f(\boldsymbol{c}^{t+1}) \stackrel{\mathsf{def}}{\leq} g(\boldsymbol{c}^{t+1}, \boldsymbol{c}^{t})$$

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

1 Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$\begin{split} g(\boldsymbol{c}, \boldsymbol{c}) &= f(\boldsymbol{c}), & \text{for all } \boldsymbol{c}, \\ g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) &\geq f(\boldsymbol{c}), & \text{for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}. \end{split}$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

2 Compute *c*^{t+1} = argmin_{*c*} g(*c*, *c*^t)
3 Then we have descent

$$f(\boldsymbol{c}^{t+1}) \stackrel{\text{def}}{\leq} g(\boldsymbol{c}^{t+1}, \boldsymbol{c}^t) \stackrel{\text{argmin}}{\leq} g(\boldsymbol{c}^t, \boldsymbol{c}^t)$$

Let *c* be an arbitrary column of *C*. Consider the subproblem:

$$\min_{c\geq 0} f(c) = \frac{1}{2} \|a - Bc\|_{F}^{2}$$

A general technique for deriving "descent" methods:

1 Find a function $g(\mathbf{c}, \tilde{\mathbf{c}})$ that satisfies:

$$g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c}), \text{ for all } \boldsymbol{c},$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) \ge f(\boldsymbol{c}), \text{ for all } \boldsymbol{c}, \tilde{\boldsymbol{c}}.$$

2 Compute c^{t+1} = argmin_c g(c, c^t)
3 Then we have descent

$$f(\boldsymbol{c}^{t+1}) \stackrel{\text{def}}{\leq} g(\boldsymbol{c}^{t+1}, \boldsymbol{c}^t) \stackrel{\text{argmin}}{\leq} g(\boldsymbol{c}^t, \boldsymbol{c}^t) \stackrel{\text{def}}{=} f(\boldsymbol{c}^t)$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

■ We need to decouple **B***c* — let's see how.

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

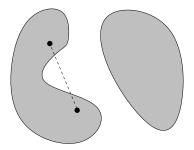
 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$



Non-convex, and a convex set

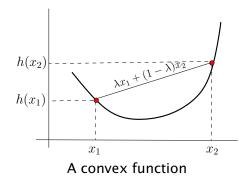
・ロ・・ 日・・ ヨ・・ 日・ うらつ

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$



・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\boldsymbol{c}) = \frac{1}{2} \sum_{i} (a_i - \boldsymbol{b}_i^T \boldsymbol{c})^2 =$$

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\boldsymbol{c}) = \frac{1}{2} \sum_{i} (a_{i} - \boldsymbol{b}_{i}^{T} \boldsymbol{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \boldsymbol{b}_{i}^{T} \boldsymbol{c} + (\boldsymbol{b}_{i}^{T} \boldsymbol{c})^{2}$$

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\mathbf{c}) = \frac{1}{2} \sum_{i} (a_{i} - \mathbf{b}_{i}^{\mathsf{T}} \mathbf{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{\mathsf{T}} \mathbf{c} + (\mathbf{b}_{i}^{\mathsf{T}} \mathbf{c})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{\mathsf{T}} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\mathbf{c}) = \frac{1}{2} \sum_{i} (a_{i} - \mathbf{b}_{i}^{T} \mathbf{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + (\mathbf{b}_{i}^{T} \mathbf{c})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\mathbf{c}) = \frac{1}{2} \sum_{i} (a_{i} - \mathbf{b}_{i}^{T} \mathbf{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + (\mathbf{b}_{i}^{T} \mathbf{c})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$

$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\mathbf{c}) = \frac{1}{2} \sum_{i} (a_{i} - \mathbf{b}_{i}^{T} \mathbf{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + (\mathbf{b}_{i}^{T} \mathbf{c})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2}$$
$$\overset{\text{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_{j} / \lambda_{ij})^{2}$$

• Main difficulty for $f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$ due to $\mathbf{B}\mathbf{c}$

■ We need to decouple **B***c* — let's see how.

We exploit that $h(x) = \frac{1}{2}x^2$ is a *convex function*

 $h(\sum_{i} \lambda_{i} x_{i}) \leq \sum_{i} \lambda_{i} h(x_{i})$, where $\lambda_{i} \geq 0$, $\sum_{i} \lambda_{i} = 1$

$$f(\mathbf{c}) = \frac{1}{2} \sum_{i} (a_{i} - \mathbf{b}_{i}^{T} \mathbf{c})^{2} = \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + (\mathbf{b}_{i}^{T} \mathbf{c})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} b_{ij} c_{j})^{2}$$
$$= \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{i} (\sum_{j} \lambda_{ij} b_{ij} c_{j} / \lambda_{ij})^{2}$$
$$\stackrel{\text{cvx}}{\leq} \frac{1}{2} \sum_{i} a_{i}^{2} - 2a_{i} \mathbf{b}_{i}^{T} \mathbf{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_{j} / \lambda_{ij})^{2}$$
$$= g(\mathbf{c}, \tilde{\mathbf{c}}), \text{ where } \lambda_{ij} \text{ are convex coeffts}$$

In summary:

$$f(\boldsymbol{c}) = \frac{1}{2} \|\boldsymbol{a} - \boldsymbol{B}\boldsymbol{c}\|_2^2$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) = \frac{1}{2} \|\boldsymbol{a}\|_2^2 - \sum_j a_i \boldsymbol{b}_i^T \boldsymbol{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$

Now we *pick* λ_{ij}

In summary:

$$f(\boldsymbol{c}) = \frac{1}{2} \|\boldsymbol{a} - \boldsymbol{B}\boldsymbol{c}\|_2^2$$

$$g(\boldsymbol{c}, \tilde{\boldsymbol{c}}) = \frac{1}{2} \|\boldsymbol{a}\|_2^2 - \sum_j a_j \boldsymbol{b}_j^T \boldsymbol{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$

Now we *pick* λ_{ij}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{\boldsymbol{b}_i^T\tilde{\boldsymbol{c}}}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 臣 のへぐ

In summary:

$$f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$$

$$g(\mathbf{c}, \tilde{\mathbf{c}}) = \frac{1}{2} \|\mathbf{a}\|_2^2 - \sum_i a_i \mathbf{b}_i^T \mathbf{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$

Now we *pick* λ_{ij}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{\boldsymbol{b}_i^T\tilde{\boldsymbol{c}}}$$

Exercise: Aux function Verify that $g(\mathbf{c}, \mathbf{c}) = f(\mathbf{c})$;

In summary:

$$f(\mathbf{c}) = \frac{1}{2} \|\mathbf{a} - \mathbf{B}\mathbf{c}\|_2^2$$

$$g(\mathbf{c}, \tilde{\mathbf{c}}) = \frac{1}{2} \|\mathbf{a}\|_2^2 - \sum_j a_j \mathbf{b}_j^T \mathbf{c} + \frac{1}{2} \sum_{ij} \lambda_{ij} (b_{ij} c_j / \lambda_{ij})^2$$

Now we *pick* λ_{ij}

$$\lambda_{ij} = \frac{b_{ij}\tilde{c}_j}{\sum_k b_{ik}\tilde{c}_k} = \frac{b_{ij}\tilde{c}_j}{\boldsymbol{b}_i^T\tilde{\boldsymbol{c}}}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Exercise: Aux function

Verify that $g(\boldsymbol{c}, \boldsymbol{c}) = f(\boldsymbol{c});$

Exercise: Richardson-Lucy

Let $f(\mathbf{c}) = \sum_i a_i \log(a_i/(\mathbf{B}\mathbf{c})_i) - a_i + (\mathbf{B}\mathbf{c})_i$. Derive an auxiliary function $g(\mathbf{c}, \tilde{\mathbf{c}})$ for this $f(\mathbf{c})$

Recall, core step: $\boldsymbol{c}^{t+1} = \operatorname{argmin} \boldsymbol{g}(\boldsymbol{c}, \boldsymbol{c}^t)$ Solve $\partial \boldsymbol{g}(\boldsymbol{c}, \boldsymbol{c}^t) / \partial \boldsymbol{c}_p = 0$

Recall, core step: $c^{t+1} = \operatorname{argmin} g(c, c^t)$ Solve $\partial g(c, c^t) / \partial c_p = 0$

$$\partial g/\partial c_p = -\sum_i a_i b_{ip} + \sum_i b_{ip} (\boldsymbol{b}_i^T \boldsymbol{c}^t) c_p / c_p^t$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Recall, core step: $c^{t+1} = \operatorname{argmin} g(c, c^t)$ Solve $\partial g(c, c^t) / \partial c_p = 0$

$$\partial g/\partial c_p = -\sum_i a_i b_{ip} + \sum_i b_{ip} (\boldsymbol{b}_i^T \boldsymbol{c}^t) c_p / c_p^t$$

Which yields (verify!) :
$$c_p = c_p^t \frac{[\mathbf{B}^T \mathbf{a}]_p}{[\mathbf{B}^T \mathbf{B} \mathbf{c}^t]_p}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Recall, core step: $c^{t+1} = \operatorname{argmin} g(c, c^t)$ Solve $\partial g(c, c^t) / \partial c_p = 0$

$$\partial g/\partial c_p = -\sum_i a_i b_{ip} + \sum_i b_{ip} (\boldsymbol{b}_i^T \boldsymbol{c}^t) c_p / c_p^t$$

Which yields (verify!) :
$$c_p = c_p^t \frac{[\mathbf{B}^T \mathbf{a}]_p}{[\mathbf{B}^T \mathbf{B} \mathbf{c}^t]_p}$$

Extending to matrices, we obtain Lee & Seung's update

$$\boldsymbol{C}^{t+1} = \boldsymbol{C}^t \odot \frac{\boldsymbol{B}^T \boldsymbol{A}}{\boldsymbol{B}^T \boldsymbol{B} \boldsymbol{C}^t}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

• We exploited convexity of x^2

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits x log x

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits x log x
- Other choices possible, e.g., by varying λ_{ij}

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x

◆□▶ ◆□▶ ▲■▶ ▲■▶ ▲□ ● ● ●

- Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits x log x
- Other choices possible, e.g., by varying λ_{ij}
- Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits x log x
- Other choices possible, e.g., by varying λ_{ij}
- Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms
- Related to *d.c. programming*

- We exploited convexity of x^2
- Expectation Maximization (EM) algorithm exploits convexity of log x
- Richardson-Lucy (Astronomy), or EMML / MLEM (Tomography) exploits x log x
- Other choices possible, e.g., by varying λ_{ij}
- Our technique one variant of repertoire of Majorization-Minimization (MM) algorithms
- Related to *d.c. programming*
- MM algorithms subject of a separate lecture!

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Summary

We looked at least-squares NMA

min
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{\mathsf{F}}^2$$
, s.t. $\boldsymbol{B}, \boldsymbol{C} \ge 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Summary

We looked at least-squares NMA

min
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{\mathsf{F}}^2$$
, s.t. $\boldsymbol{B}, \boldsymbol{C} \ge 0$.

We derived two algorithms: (i) Gradient-Projection; (ii) multiplicative updates

Summary

We looked at least-squares NMA

I

min
$$\frac{1}{2} \| \boldsymbol{A} - \boldsymbol{B} \boldsymbol{C} \|_{\mathsf{F}}^2$$
, s.t. $\boldsymbol{B}, \boldsymbol{C} \ge 0$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

 We derived two algorithms: (i) Gradient-Projection; (ii) multiplicative updates

Take home message: The methods, techniques that we saw, are general. You can use them for many other problems!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Applications & Practical Concerns

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Applications - example areas

- 1 Statistics
- 2 Data mining, Machine learning
- 3 Signal processing (images, speech, music, etc.)
- 4 Computer graphics
- 5 Chemometrics
- 6 Remote Sensing
- Scientific computing
- 8 ...

TSVD

- Statistics
- Psychometrics
- Data Mining, Machine learning
- Information Retrieval
- Biology, Bioinformatics
- In general, exploratory data analysis

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

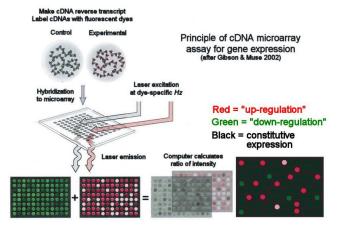
Bioinformatics - gene microarray analysis

Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.).

Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using *gene microarray*

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using *gene microarray*



▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.). Activity recorded using *gene microarray* Activities across numerous "conditions" or experiments

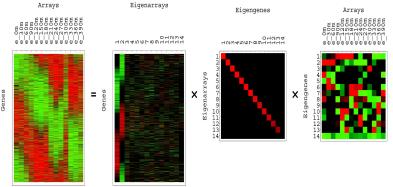
We measure an $m \times n$ ($m \gg n$) genes \times array matrix.

Some "cleaning" (pre-processing) etc. needed.

Truncated SVD on this gene-expression matrix is performed.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ ()

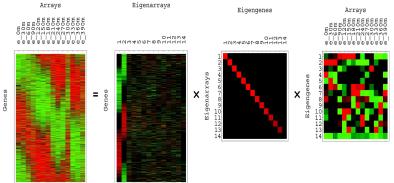
Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.).



イロト 不得 トイヨト イヨト

э

Biologists measure *activity* (aka gene-expression) of different genes under various conditions (time, temperature, etc.).



Significant "eigengenes" \Rightarrow independent biological processes and experimental artifacts.

Figure taken from: http://www.bme.utexas.edu/research/orly/teaching/BME341

< (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) <

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

NMA

- Chemometrics
- Document modeling, text-analysis
- Spam modeling
- Bioinformatics
- Music analysis
- Computer Vision
- Image processing
- Remote sensing (hyperspectral imaging)
- Dimensionality reduction
- Computer graphics
- Collaborative filtering
- Multiframe blind deconvolution

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

- Dataset: Collection of 3891 documents
- Each document represented as a 4857 dimensional vector

- Dataset: Collection of 3891 documents
- Each document represented as a 4857 dimensional vector
- **Data matrix:** $\mathbf{A} \in \mathbb{R}^{4857 \times 3891}_+$

- Dataset: Collection of 3891 documents
- Each document represented as a 4857 dimensional vector
- **Data matrix:** $\mathbf{A} \in \mathbb{R}^{4857 \times 3891}_+$
- Three "human" defined categories CISI, CRAN and MED

- Dataset: Collection of 3891 documents
- Each document represented as a 4857 dimensional vector
- **Data matrix:** $\mathbf{A} \in \mathbb{R}^{4857 \times 3891}_+$
- Three "human" defined categories CISI, CRAN and MED
- NMA: **A** ≈ **BC**, where **B** has 3 columns representing "topics"

NMA - Text Analysis

- Dataset: Collection of 3891 documents
- Each document represented as a 4857 dimensional vector
- **Data matrix:** $\mathbf{A} \in \mathbb{R}^{4857 \times 3891}_+$
- Three "human" defined categories CISI, CRAN and MED
- NMA: **A** ≈ **BC**, where **B** has 3 columns representing "topics"

CISI	CRAN	MED
retrieval	wing	patients
system	pressure	cells
systems	mach	growth
indexing	supersonic	hormone
scientific	shock	cancer
science	jet	treatment
index	lift	buckling
search	wings	blood
computer	body	cases
document	theory	cell

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Image analysis - toy example

"Swimmer" database - 256, 32 x 32 images [DoSt03]

- Stick figures showing different configurations of the limbs of a swimmer
- Data matrix of size 1024 × 256

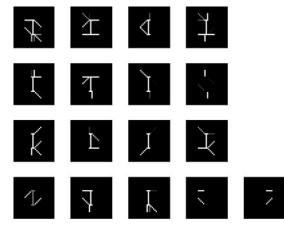
▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Image analysis - toy example

"Swimmer" database - 256, 32 x 32 images [DoSt03]

- Stick figures showing different configurations of the limbs of a swimmer
- Data matrix of size 1024 × 256
- Decompose the matrix into 1024 × 17 (17 seemed to be the "true" nonnegative rank)

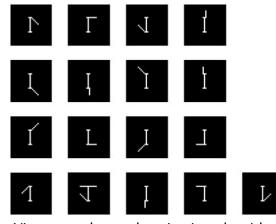
Image analysis - toy example



Rank-17 decomposition via Lee/Seung's algo Time: 182.4 seconds, Objective: 2.41×10^7

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Image analysis - toy example

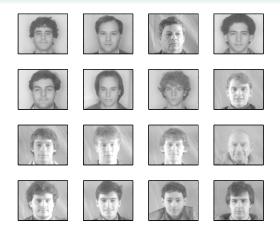


Via more advanced projection algorithm Time: 62.3 seconds, Objective: 6.85×10^{-4}

イロト 不得 トイヨト イヨト

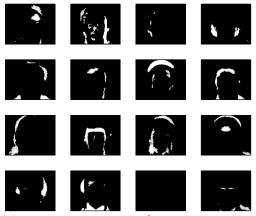
э

Part of a face recognition system



143 images from MIT face image database
 Input matrix A ∈ ℝ^{9216×143}₊

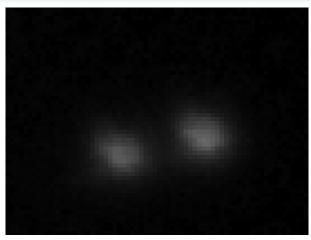
Part of a face recognition system



- A rank-20 approximation to the input
- The basis vectors (columns of B) approximately correspond to important "parts" describing the faces.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

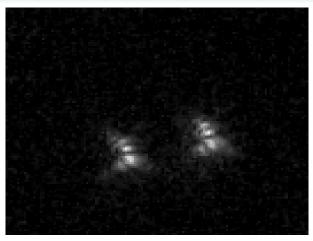
Multiframe blind deconvolution - astronomy



long-time exposure (approx. 1 s) Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

Multiframe blind deconvolution - astronomy



short-time exposure (approx. 10ms) Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 めへぐ

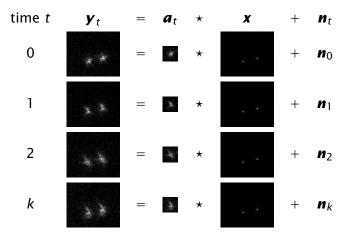
Multiframe blind deconvolution - astronomy

real-time video (15 fps) Problem: Atmospheric turbulences

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

Our model of the video

Our model of the video



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$\begin{bmatrix} | & \vdots & | \\ \mathbf{y}_1 & | & \mathbf{y}_n \\ | & \vdots & | \end{bmatrix} \approx \begin{bmatrix} | & \vdots & | \\ \mathbf{a}_1 & | & \mathbf{a}_t \\ | & \vdots & | \end{bmatrix} \star \mathbf{x}$

Convolution operation may be written as

$a \star x = Ax = Xa$

$$\begin{bmatrix} | \vdots | \\ \mathbf{y}_1 | \mathbf{y}_n \\ | \vdots | \end{bmatrix} \approx \begin{bmatrix} | \vdots | \\ \mathbf{a}_1 | \mathbf{a}_t \\ | \vdots | \end{bmatrix} \star \mathbf{x}$$

Convolution operation may be written as

 $a \star x = Ax = Xa$

$$\begin{bmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_t \end{bmatrix} \approx \begin{bmatrix} \mathbf{A}_1 \\ \cdots \\ \mathbf{A}_t \end{bmatrix} \mathbf{x}$$
$$\begin{bmatrix} \mathbf{y}_1 & \mathbf{y}_2 & \cdots & \mathbf{y}_t \end{bmatrix} \approx \mathbf{X} \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \cdots & \mathbf{a}_t \end{bmatrix}$$

 $\boldsymbol{Y} \approx \boldsymbol{X} \boldsymbol{A}$

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

◆□▶ ◆□▶ ◆ □▶ ★ □▶ - □ - のへぐ

Multiframe blind deconvolution

We seek to minimize

$$\frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{A} \|_{\mathsf{F}}^2$$
 s.t. $\boldsymbol{X}, \boldsymbol{A} \ge 0$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Multiframe blind deconvolution

We seek to minimize

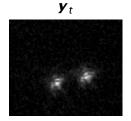
$$\frac{1}{2} \| \boldsymbol{Y} - \boldsymbol{X} \boldsymbol{A} \|_{\mathsf{F}}^2$$
 s.t. $\boldsymbol{X}, \boldsymbol{A} \ge 0$

Note 1: X and A are the unknowns

Note 2: Additional constraints may be present on **X** or **A** Note 3: Looks like an NMA problem (except **X** or **A** have special structure due to the convolution $a \star x$)

time t

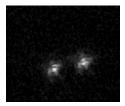
1



=

=

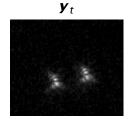
x_t



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

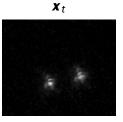
time t

2

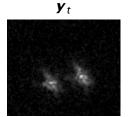


 \approx

 \approx



3



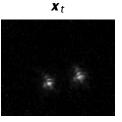
at

*

*

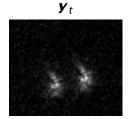
 \approx

 \approx



time t

4

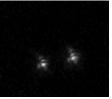


 \approx

 \approx

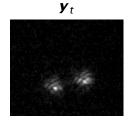
at

*



time t

5

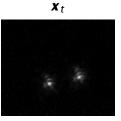


~

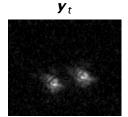
 \approx

*

at



6



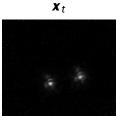
at

 \star

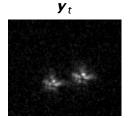
*

 \approx

 \approx



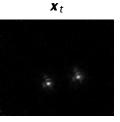
7



*

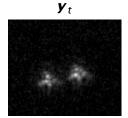
 \approx

 \approx



◆□ > ◆□ > ◆三 > ◆三 > 三 のへの

8



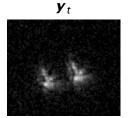
at *

*

 \approx

 \approx

9

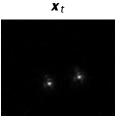


at *

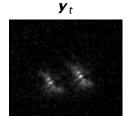
*

 \approx

 \approx



10

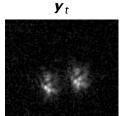


at *

*

 \approx

 \approx



 \approx

 \approx

at

*

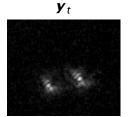
*

11

ヘロト ヘ回ト ヘヨト ヘヨト

æ

12

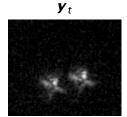


*

 \approx

 \approx

13



at *

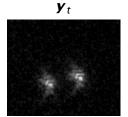
*

 \approx

 \approx

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへの

14



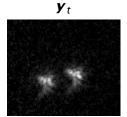
at

 \approx

 \approx

 \star

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへ()・



 \approx

 \star

ヘロト ヘ回ト ヘヨト ヘヨト

æ.

15

 \approx

 \approx

at

16

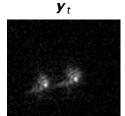
*

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

x_t

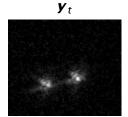
17



 \star

 \approx

 \approx



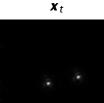
at

*

*

 \approx

 \approx

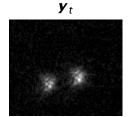


・ロト ・ 日 ト ・ 日 ト ・ 日 ト

æ.

18

19

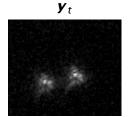


*

 \approx

 \approx

20



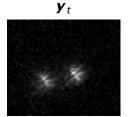
at *

*

 \approx

 \approx

21



a_t *

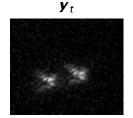
*

 \approx

 \approx

time t

22



at *

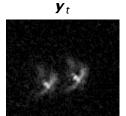
*

 \approx

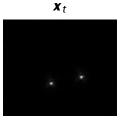
 \approx

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q ()

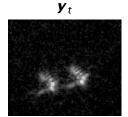
23



 \approx



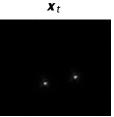
24



*

 \approx

 \approx





 \approx

 \approx

at

*

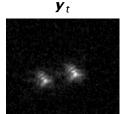
*

25

(日) (四) (三) (三)

æ

26



at

 \star

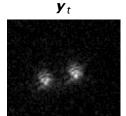
*

 \approx

 \approx

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ



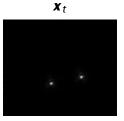
 \approx

 \approx

at

 \star

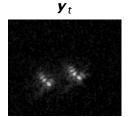
*



・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

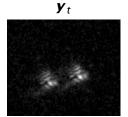
28



*

 \approx

 \approx

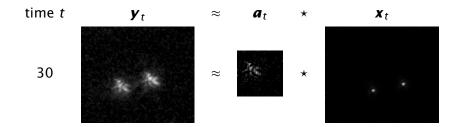


 \approx

 \approx

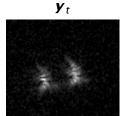
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● の

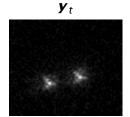
31



 \approx

*

at



at *

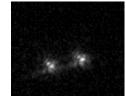
*

 \approx

 \approx

・ロト ・四ト ・ヨト ・ヨト

æ



y_t

 \approx

 \approx

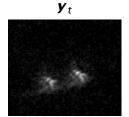
at

33

*

*

34



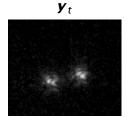
at *

*

 \approx

 \approx

◆□ > ◆□ > ◆三 > ◆三 > ・三 のへ()・



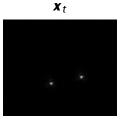
 \approx

 \approx

at

 \star

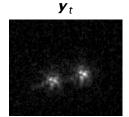
*



・ロト ・四ト ・ヨト ・ヨト

æ

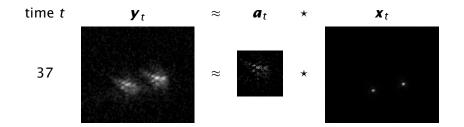
36

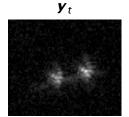


*

 \approx

 \approx





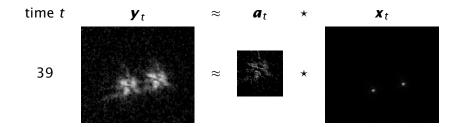
at

 \approx

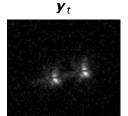
*

(日) (四) (三) (三)

æ



40



*

 \approx

 \approx

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - の々

MFBD Video

Video example

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = のへで

Discussion & Wrap-up

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

Summary

Introduction to matrix approximation problems

- Background, motivation
- Truncated SVD; its properties
- List of some popular problems, e.g., NMA
- 2 Algorithms for NMA
 - Alternating minimization
 - Alternating descent
 - Gradient Projection
 - Multiplicative updates
- 3 Applications
 - Bioinformatics app of SVD
 - Image processing, astronomy, etc. of NMA

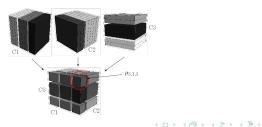
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Challenges, other stuff

- Theoretical: Non-convex optimization
- Analysis, new algorithms, new problems
- Practical: Large-scale, sparse data
- Cluster, multi-core, GPU, etc.
- Efficient SVD (PROPACK, SLEPc, etc.)
- Methods based on random projections
- Numerous other matrix nearness problems exist
- Tensor approximations

Challenges, other stuff

- Theoretical: Non-convex optimization
- Analysis, new algorithms, new problems
- Practical: Large-scale, sparse data
- Cluster, multi-core, GPU, etc.
- Efficient SVD (PROPACK, SLEPc, etc.)
- Methods based on random projections
- Numerous other matrix nearness problems exist
- Tensor approximations



▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々で

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data Analysis on MapReduce by Chao Liu et al.

- Input matrix A of size 43.9M × 769M; total 4.38 × 10⁹ nonzeros (1.2 × 10⁻⁷ - density)
- 7 hours per iteration (dedicated cluster of 8 comps)
- http://research.microsoft.com/pubs/119077/DNMF.pdf

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ○ ○ ○ ○

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data Analysis on MapReduce by Chao Liu et al.

- Input matrix A of size 43.9M × 769M; total 4.38 × 10⁹ nonzeros (1.2 × 10⁻⁷ - density)
- 7 hours per iteration (dedicated cluster of 8 comps)
- http://research.microsoft.com/pubs/119077/DNMF.pdf

I think YOU can do better!