
A≈BC
Matrix Approximation Problems

Suvrit Sra
EU Regional School, RWTH Aachen

April 28, 2010

(MPI für biologische Kybernetik, Tübingen)

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

Not quite!

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

Given an input matrix A compute a matrix Â that satisfies
certain desired properties, e.g.,

What? Introduction Why? Preliminaries TSVD

What’s the course about?

A ≈ Â

Given an input matrix A compute a matrix Â that satisfies
certain desired properties, e.g.,

symmetry, Â
T = Â

sparsity, # nnz(Â) is small

positive definiteness, Â � 0

low-rank, Â = BC
constraints, Â ∈A
…

What? Introduction Why? Preliminaries TSVD

Today’s lecture touches
1 Matrix Analysis

2 Numerical linear algebra

3 Computer Science

4 High-performance computing

5 Numerical optimization

6 Statistics

7 Data mining & machine learning

8 Image Processing, Astronomy, etc.

What? Introduction Why? Preliminaries TSVD

Today’s lecture touches
1 Matrix Analysis

2 Numerical linear algebra

3 Computer Science

4 High-performance computing

5 Numerical optimization

6 Statistics

7 Data mining & machine learning

8 Image Processing, Astronomy, etc.

What? Introduction Why? Preliminaries TSVD

Introduction – matrices all over

� Images

� Scientific
Computing

� Statistics

� Computer
Science

The Internet Graph1

1Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis’ website;
Internet graph from Wikipedia;

What? Introduction Why? Preliminaries TSVD

Introduction – matrices all over

� Images

� Scientific
Computing

� Statistics

� Computer
Science

The Internet Graph1

1Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis’ website;
Internet graph from Wikipedia;

What? Introduction Why? Preliminaries TSVD

Introduction – matrices all over

� Images

� Scientific
Computing

� Statistics

� Computer
Science

The Internet Graph1

1Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis’ website;
Internet graph from Wikipedia;

What? Introduction Why? Preliminaries TSVD

Introduction – matrices all over

� Images

� Scientific
Computing

� Statistics

� Computer
Science

The Internet Graph1

1Matrix Collage made from images on Wikipedia; Sci. Comp. images take from Tim Davis’ website;
Internet graph from Wikipedia;

What? Introduction Why? Preliminaries TSVD

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Measurements fail to satisfy expectation:

A B C
A 0 3 8
B 2.8 0 4
C 7.9 4.1 0

A B C
A 0 3 7.5
B 3 0 4.5
C 7.5 4.5 0

AC ≠ CA and AC > AB + BC!

Rounding errors, noise confound:

Expected symmetric, orthogonal, real, posdef, etc., but
obtained something else!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

Reduce storage

Numerical benefits

Expose structure

Enable visualization

Easier analysis

E.g., for face recognition

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Algorithm requires input to satisfy a property

Dimensionality reduction:

Hires (3MB) Lores (3KB!)

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Discover structure:

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Discover structure:

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

Discover structure:

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!

What? Introduction Why? Preliminaries TSVD

Introduction – Why approximate?

For ¤¤ reasons!

Netflix million-¦ prize problem!

Typical matrix completion problem

Input: matrix A with several missing entries

“Predict” missing entries to “complete” the matrix

Netflix: movies x users matrix; available entries were
ratings given to movies by users

Task was to predict missing entries, 10% better than
Netflix’s inhouse system

Winners, and most top-performing methods: ultimately
based on matrix approximation ideas!

What? Introduction Why? Preliminaries TSVD

Preliminaries

What? Introduction Why? Preliminaries TSVD

Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖

What? Introduction Why? Preliminaries TSVD

Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖

What? Introduction Why? Preliminaries TSVD

Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖

What? Introduction Why? Preliminaries TSVD

Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖

What? Introduction Why? Preliminaries TSVD

Introduction – preliminary concepts

Suppose we wish to approx. matrix A by Â. Ideally, Â is the
“nearest” matrix satisfying a desired property (eg. Â ∈ Ω)?

First define nearest!

We measure “distance” between two matrices using ∆

∆(A, Â)

“Nearest” means: Â ∈ Ω having smallest ∆ value

Commonly used: ∆(A, Â) = ‖A− Â‖

What? Introduction Why? Preliminaries TSVD

Digression: Matrix Norms

An (operator) norm of a matrix A is defined as

‖A‖ =max‖x‖=1 ‖Ax‖

Example: Maximum singular value, σ1(A) = ‖A‖2

The Frobenius norm ‖A‖F is defined as

‖X‖F =
√∑

ij x2
ij

I. Exercise: prove ‖X‖2
F = Tr(X T X) where Tr(�) Õ

∑
i �ii II.

Bonus: verify that σ1(A) = ‖A‖2

We will mostly use the Frobenius norm for convenience

What? Introduction Why? Preliminaries TSVD

Digression: Matrix Norms

An (operator) norm of a matrix A is defined as

‖A‖ =max‖x‖=1 ‖Ax‖

Example: Maximum singular value, σ1(A) = ‖A‖2

The Frobenius norm ‖A‖F is defined as

‖X‖F =
√∑

ij x2
ij

I. Exercise: prove ‖X‖2
F = Tr(X T X) where Tr(�) Õ

∑
i �ii II.

Bonus: verify that σ1(A) = ‖A‖2

We will mostly use the Frobenius norm for convenience

What? Introduction Why? Preliminaries TSVD

Digression: Matrix Norms

An (operator) norm of a matrix A is defined as

‖A‖ =max‖x‖=1 ‖Ax‖

Example: Maximum singular value, σ1(A) = ‖A‖2

The Frobenius norm ‖A‖F is defined as

‖X‖F =
√∑

ij x2
ij

I. Exercise: prove ‖X‖2
F = Tr(X T X) where Tr(�) Õ

∑
i �ii II.

Bonus: verify that σ1(A) = ‖A‖2

We will mostly use the Frobenius norm for convenience

What? Introduction Why? Preliminaries TSVD

Digression: Matrix Norms

An (operator) norm of a matrix A is defined as

‖A‖ =max‖x‖=1 ‖Ax‖

Example: Maximum singular value, σ1(A) = ‖A‖2

The Frobenius norm ‖A‖F is defined as

‖X‖F =
√∑

ij x2
ij

I. Exercise: prove ‖X‖2
F = Tr(X T X) where Tr(�) Õ

∑
i �ii II.

Bonus: verify that σ1(A) = ‖A‖2

We will mostly use the Frobenius norm for convenience

What? Introduction Why? Preliminaries TSVD

Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT)/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.

What? Introduction Why? Preliminaries TSVD

Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT)/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.

What? Introduction Why? Preliminaries TSVD

Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT)/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.

What? Introduction Why? Preliminaries TSVD

Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT)/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.

What? Introduction Why? Preliminaries TSVD

Warmup example

Suppose A ∈ Rn×n. What is the nearest symmetric matrix?

min ‖A− Â‖F s.t. Â
T = Â

Solution: FaHo55

Â = (A+AT)/2. To verify, do the following:

1 Let X be any n × n symmetric matrix

2 Prove that ‖A− Â‖F ≤ ‖A− X‖F

‖A− Â‖F = 1
2‖A− X + X T −AT ‖F

≤ 1
2‖A− X‖F + 1

2‖(X −A)T ‖F = ‖A− X‖F,

since ‖X‖F = ‖X T ‖F.

What? Introduction Why? Preliminaries TSVD

More challenging example

Suppose A ∈ Rm×n (we assume throughout m ≥ n). What is
the nearest rank-k matrix, where k < r = rank(A)?

Let B ∈ Rm×k and C ∈ Rk×n . Then, rank(BC) ≤ k. And we
have the formula from the title slide:

A ≈ BC

“Factors” B, C can be computed by solving

min 1
2‖A− BC‖2

F

But How??

What? Introduction Why? Preliminaries TSVD

More challenging example

Suppose A ∈ Rm×n (we assume throughout m ≥ n). What is
the nearest rank-k matrix, where k < r = rank(A)?

Let B ∈ Rm×k and C ∈ Rk×n . Then, rank(BC) ≤ k. And we
have the formula from the title slide:

A ≈ BC

“Factors” B, C can be computed by solving

min 1
2‖A− BC‖2

F

But How??

What? Introduction Why? Preliminaries TSVD

More challenging example

Suppose A ∈ Rm×n (we assume throughout m ≥ n). What is
the nearest rank-k matrix, where k < r = rank(A)?

Let B ∈ Rm×k and C ∈ Rk×n . Then, rank(BC) ≤ k. And we
have the formula from the title slide:

A ≈ BC

“Factors” B, C can be computed by solving

min 1
2‖A− BC‖2

F

But How??

What? Introduction Why? Preliminaries TSVD

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let A ∈ Rm×n. There exist orthogonal matrices U and V

UT AV = Diag(σ1, . . . , σp), p =min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ 0.

Am×n = Um×m

[
Σn×n

0

]
V T

n×n

Exercise: A =
∑

i σiuiv T
i (U = [ui] and V = [v i])

What? Introduction Why? Preliminaries TSVD

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let A ∈ Rm×n. There exist orthogonal matrices U and V

UT AV = Diag(σ1, . . . , σp), p =min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ 0.

Am×n = Um×m

[
Σn×n

0

]
V T

n×n

Exercise: A =
∑

i σiuiv T
i (U = [ui] and V = [v i])

What? Introduction Why? Preliminaries TSVD

The SVD

Recall fundamental matrix factorization:

Singular Value Decomposition

SVD (Thm. 2.5.2 [GoLo96])

Let A ∈ Rm×n. There exist orthogonal matrices U and V

UT AV = Diag(σ1, . . . , σp), p =min(m,n),

where σ1 ≥ σ2 ≥ · · · ≥ 0.

Am×n = Um×m

[
Σn×n

0

]
V T

n×n

Exercise: A =
∑

i σiuiv T
i (U = [ui] and V = [v i])

What? Introduction Why? Preliminaries TSVD

Approximation example: truncated SVD

Reveals a lot about the structure of matrix

Makes explicit (algebraically, and numerically) the
notions of rank, range space, null space of A.

Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let A have the SVD UΣV T . If k < rank(A) and

Ak =
∑k

i=1
σiuiv T

i , then,

‖A−Ak‖2 ≤ ‖A− B‖2, s.t. rank(B) ≤ k

‖A−Ak‖F ≤ ‖A− B‖F, s.t. rank(B) ≤ k.

What? Introduction Why? Preliminaries TSVD

Approximation example: truncated SVD

Reveals a lot about the structure of matrix

Makes explicit (algebraically, and numerically) the
notions of rank, range space, null space of A.

Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let A have the SVD UΣV T . If k < rank(A) and

Ak =
∑k

i=1
σiuiv T

i , then,

‖A−Ak‖2 ≤ ‖A− B‖2, s.t. rank(B) ≤ k

‖A−Ak‖F ≤ ‖A− B‖F, s.t. rank(B) ≤ k.

What? Introduction Why? Preliminaries TSVD

Approximation example: truncated SVD

Reveals a lot about the structure of matrix

Makes explicit (algebraically, and numerically) the
notions of rank, range space, null space of A.

Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let A have the SVD UΣV T . If k < rank(A) and

Ak =
∑k

i=1
σiuiv T

i , then,

‖A−Ak‖2 ≤ ‖A− B‖2, s.t. rank(B) ≤ k

‖A−Ak‖F ≤ ‖A− B‖F, s.t. rank(B) ≤ k.

What? Introduction Why? Preliminaries TSVD

Approximation example: truncated SVD

Reveals a lot about the structure of matrix

Makes explicit (algebraically, and numerically) the
notions of rank, range space, null space of A.

Has numerous applications; for us, interesting because

Theorem (Optimality of SVD)

Let A have the SVD UΣV T . If k < rank(A) and

Ak =
∑k

i=1
σiuiv T

i , then,

‖A−Ak‖2 ≤ ‖A− B‖2, s.t. rank(B) ≤ k

‖A−Ak‖F ≤ ‖A− B‖F, s.t. rank(B) ≤ k.

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

Truncated SVD (TSVD) – Proof Sketch

Prove: TSVD yields “best” Rank-k approximation to matrix A

Proof: (2-norm).

1 First verify that ‖A−Ak‖2 = σk+1

2 Let B be any rank-k matrix

3 Prove that ‖A− B‖2 ≥ σk+1

Since rank(B) = k, there are n − k vectors that span the
null-spaceN (B). ButN (B)∩V k+1 ≠ {0} (??), so we can pick
a unit-norm vector z ∈N (B)∩V k+1. Now Bz = 0, so

‖A− B‖2
2 ≥ ‖(A− B)z‖2

2 = ‖Az‖2
2 =

∑k+1

i
σ2

i (v
T
i z)2 ≥ σ2

k+1

We used: ‖Az‖2 ≤ ‖A‖2‖z‖2

What? Introduction Why? Preliminaries TSVD

TSVD – Message
If we are seeking a rank-k approximation to A

A ≈ BC

Am

n

≈ B

m

k
Ck
n

TSVD yields: B = UkΣk , and C = V T
k

What? Introduction Why? Preliminaries TSVD

TSVD – Message
If we are seeking a rank-k approximation to A

A ≈ BC

Am

n

≈ B

m

k
Ck
n

TSVD yields: B = UkΣk , and C = V T
k

What? Introduction Why? Preliminaries TSVD

TSVD – Message
If we are seeking a rank-k approximation to A

A ≈ BC

Am

n

≈ B

m

k
Ck
n

TSVD yields: B = UkΣk , and C = V T
k

What? Introduction Why? Preliminaries TSVD

Example Problems

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

1 Truncated SVD, PCA

2 Nonnegative matrix approximation (aka NMF)

3 Sparsity constrained versions of PCA, NMF

4 Clustering, Co-clustering

5 Matrix Completion

6 Probabilistic matrix factorization

7 Nearest positive-definite matrix

8 Parallel variants of all of these

9 Approximate variants

10 and so on....

Problems

TSVD, PCA

Principal component analysis, aka PCA based on TSVD

PCA computes top-k eigenvectors (principal components)

Dimensionality reduction; exploratory data analysis;

Principal components account for variance (spread)

Problems

TSVD, PCA

Principal component analysis, aka PCA based on TSVD

PCA computes top-k eigenvectors (principal components)
Dimensionality reduction; exploratory data analysis;

Principal components account for variance (spread)

Problems

Clustering, Co-clustering

Problems

Clustering, Co-clustering

Original matrix

a + a + +
z ◦ z ◦ ◦
a + a + +
− * − * *
− * − * *
z ◦ z ◦ ◦

Problems

Clustering, Co-clustering

Clustered matrix
a a + + +
z z ◦ ◦ ◦
a a + + +
− − * * *
− − * * *
z z ◦ ◦ ◦

After clustering and permutation

Problems

Clustering, Co-clustering

Co-clustered matrix
a a + + +
a a + + +
z z ◦ ◦ ◦
z z ◦ ◦ ◦
− − * * *
− − * * *

After co-clustering and permutation

Problems

Clustering, Co-clustering

Let X ∈ Rm×n be the input matrix.

We cluster columns of X

Well-known k-means clustering problem can be written as

min
B,C

1
2‖X − BC‖2

F s.t. CT C = Diag(sizes)

where B ∈ Rm×k , and C ∈ {0,1}k×n.

Problems

Clustering, Co-clustering

Let X ∈ Rm×n be the input matrix.

We cluster columns of X

Well-known k-means clustering problem can be written as

min
B,C

1
2‖X − BC‖2

F s.t. CT C = Diag(sizes)

where B ∈ Rm×k , and C ∈ {0,1}k×n.

Teaser: How would you write a co-clustering problem?

Problems

Matrix Completion

Recall the Netflix example.

The general matrix completion task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself – no time to cover today.

One recent result:

Can perfectly recover most low-rank matrices!

Problems

Matrix Completion

Recall the Netflix example.

The general matrix completion task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself – no time to cover today.

One recent result:

Can perfectly recover most low-rank matrices!

Problems

Matrix Completion

Recall the Netflix example.

The general matrix completion task is:

Recover a matrix from a sampling of its entries!

A very nice topic in itself – no time to cover today.

One recent result:

Can perfectly recover most low-rank matrices!

Problems

Nearest positive definite

Sometimes one needs to find for a symmetric A

min ‖A− Â‖F s.t. Â � 0

Solution: BoXi06

A = A+−A−, A+ = AT
+ � 0, A− = AT

− � 0, A+A− = 0. Moreover

‖A−A+‖F = ‖A−‖F ≤ ‖A− X‖F

for any X � 0. (Observe, computing A− enough)

Modified Cholesky: A+ E with ‖E‖2 = O(n)

Problems

Nearest positive definite

Sometimes one needs to find for a symmetric A

min ‖A− Â‖F s.t. Â � 0

Solution: BoXi06

A = A+−A−, A+ = AT
+ � 0, A− = AT

− � 0, A+A− = 0. Moreover

‖A−A+‖F = ‖A−‖F ≤ ‖A− X‖F

for any X � 0. (Observe, computing A− enough)

Modified Cholesky: A+ E with ‖E‖2 = O(n)

Problems

Nearest positive definite

Sometimes one needs to find for a symmetric A

min ‖A− Â‖F s.t. Â � 0

Solution: BoXi06

A = A+−A−, A+ = AT
+ � 0, A− = AT

− � 0, A+A− = 0. Moreover

‖A−A+‖F = ‖A−‖F ≤ ‖A− X‖F

for any X � 0. (Observe, computing A− enough)

Modified Cholesky: A+ E with ‖E‖2 = O(n)

Problems

Nonnegative matrix approximation (aka NMF)
Say we are seeking a low-rank approx A ≈ BC

We could invoke SVD – but sometimes not desirable:

SVD yields dense B and C

B and C full of negative numbers, even if A ≥ 0

SVD decomposition might not be that easy to interpret

So why not impose B ≥ 0, C ≥ 0?

Problems

Nonnegative matrix approximation (aka NMF)
Say we are seeking a low-rank approx A ≈ BC

We could invoke SVD – but sometimes not desirable:

SVD yields dense B and C

B and C full of negative numbers, even if A ≥ 0

SVD decomposition might not be that easy to interpret

So why not impose B ≥ 0, C ≥ 0?

Problems

Nonnegative matrix approximation (aka NMF)
Say we are seeking a low-rank approx A ≈ BC

We could invoke SVD – but sometimes not desirable:

SVD yields dense B and C

B and C full of negative numbers, even if A ≥ 0

SVD decomposition might not be that easy to interpret

So why not impose B ≥ 0, C ≥ 0?

Problems

Nonnegative matrix approximation (aka NMF)

Problems

Nonnegative matrix approximation (aka NMF)

Problems

Nonnegative matrix approximation (aka NMF)

Examples from original Lee/Seung paper on NMA

Problems

Other Variants of NMA

KL-NMA – very interesting variant – more popular for
modeling “co-occurrence” data

Bregman NMA – examples from literature – spam filtering

Sparsity constrained NMA (Hoyer, etc.)

Local NMA

Numerous other variations

Problems

Sparsity Constrained Versions

Sparse PCA

Semi-discrete decomposition

Discrete basis problem

Lasso for variable selection

Sparse generalized eigenvalue problem

Other variants

NMA Algorithms

Algorithms & Theory

NMA Algorithms

Algorithms: NMA

We consider the NMA problem:

A ≈ BC s.t. B,C ≥ 0.

NMA Algorithms

Algorithms: NMA

Measure quality of approximation using ∆:

minimize ∆(A,BC) s.t. B,C ≥ 0

NMA Algorithms

Algorithms: NMA

Measure quality of approximation using ∆:

minimize ∆(A,BC) s.t. B,C ≥ 0

Instantiations: where ∆ is

‖A− BC‖2
F – least-squares NMA

‖A− BC‖1 – robust NMA

KL(A,BC) – relative entropy (KL) NMA

D(A,BC) – Bregman divergence NMA

NMA Algorithms

Algorithms: NMA

Measure quality of approximation using ∆:

minimize ∆(A,BC) s.t. B,C ≥ 0

Instantiations: where ∆ is

‖A− BC‖2
F – least-squares NMA

‖A− BC‖1 – robust NMA

KL(A,BC) – relative entropy (KL) NMA

D(A,BC) – Bregman divergence NMA

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable?

Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution?

Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

Least-squares NMA

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

Is this problem solvable? Yes!

Can we find the solution? Hmmm

In general, NMF is NP-Hard (Vavasis 2007)

How about merely a locally optimal solution?

Even that cannot be found easily!

NMA Algorithms

NMA Algorithms

Hack: “Zero-out” TSVD

Alternating methods

Directly optimizing (won’t cover)

Online algorithms (won’t cover)

NMA Algorithms

NMA Algorithm: Zero-out SVD

Input: A, k

1 [U ,Σ,V] = SVD(A,k)
2 B ← UkΣk , C ← V T

k

3 B ←max(0,B), C ←max(0,C)
Advantages: Simple, deterministic
Disadvantages: could be slow, no theoretical guarantees,
solution can be really bad!

NMA Algorithms

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize B0, t ← 0

2 Compute C t+1 s.t. ∆(A,BtC t+1) ≤ ∆(A,BtC t)
3 Compute Bt+1 s.t. ∆(A,Bt+1C t+1) ≤ ∆(A,BtC t+1)
4 t ← t + 1, and repeat until stopping criteria met.

For least-squares NMA

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

NMA Algorithms

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize B0, t ← 0

2 Compute C t+1 s.t. ∆(A,BtC t+1) ≤ ∆(A,BtC t)

3 Compute Bt+1 s.t. ∆(A,Bt+1C t+1) ≤ ∆(A,BtC t+1)
4 t ← t + 1, and repeat until stopping criteria met.

For least-squares NMA

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

NMA Algorithms

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize B0, t ← 0

2 Compute C t+1 s.t. ∆(A,BtC t+1) ≤ ∆(A,BtC t)
3 Compute Bt+1 s.t. ∆(A,Bt+1C t+1) ≤ ∆(A,BtC t+1)

4 t ← t + 1, and repeat until stopping criteria met.

For least-squares NMA

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

NMA Algorithms

NMA Algorithm: Alternating Methods

Generic Iterative Alternating Descent

1 Initialize B0, t ← 0

2 Compute C t+1 s.t. ∆(A,BtC t+1) ≤ ∆(A,BtC t)
3 Compute Bt+1 s.t. ∆(A,Bt+1C t+1) ≤ ∆(A,BtC t+1)
4 t ← t + 1, and repeat until stopping criteria met.

For least-squares NMA

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ;

C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ;

Bt+1 ←max(0,B)

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

ALS is fast, simple, often effective, but ...

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

ALS is fast, simple, often effective, but ...

Bad News!

NMA Algorithms

Alternating least-squares

Alternating Least Squares computes

C = argmin
C

‖A− BtC‖2
F ; C t+1 ←max(0,C)

B = argmin
B

‖A− BC t+1‖2
F ; Bt+1 ←max(0,B)

ALS is fast, simple, often effective, but ...

Bad News!

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

is NOT guaranteed!

NMA Algorithms

Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

NMA Algorithms

Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

NMA Algorithms

Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

Advantages: Descent is guaranteed; even convergence to
local-min!

NMA Algorithms

Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

Advantages: Descent is guaranteed; even convergence to
local-min!
Disadvantages: More complicated optimization problem,
slower than ALS

NMA Algorithms

Alternating NNLS

“Simple” fix is to instead compute

C t+1 = argmin
C

‖A− BtC‖2
F s.t. C ≥ 0

Bt+1 = argmin
B

‖A− BC t+1‖2
F s.t. B ≥ 0

Advantages: Descent is guaranteed; even convergence to
local-min!
Disadvantages: More complicated optimization problem,
slower than ALS

How to solve the “argmin”??

NMA Algorithms

Alternating NNLS – subproblem

The nonnegative least squares (NNLS) subproblem is

minC≥0
1
2‖A− BC‖2

F

Essentially the same as solving

minc≥0 f (c) = 1
2‖a − Bc‖2

2

Nice, convex optimization problem

Numerous algorithms for solving

Let us look at the simplest

NMA Algorithms

Alternating NNLS – subproblem

The nonnegative least squares (NNLS) subproblem is

minC≥0
1
2‖A− BC‖2

F

Essentially the same as solving

minc≥0 f (c) = 1
2‖a − Bc‖2

2

Nice, convex optimization problem

Numerous algorithms for solving

Let us look at the simplest

NMA Algorithms

Background – Gradient Methods

Consider first the unconstrained problem

min f (c) = 1
2‖a − Bc‖2

2

c∗

f (c)

∇f (c∗) = 0

ck

ck+1

· · ·

Familiar gradient descent

NMA Algorithms

Background – Gradient Methods

Consider first the unconstrained problem

min f (c) = 1
2‖a − Bc‖2

2

c∗

f (c)

∇f (c∗) = 0

ck

ck+1

· · ·

Familiar gradient descent

NMA Algorithms

Background – Gradient Methods

Gradient descent: Vector ck+1 is chosen as

ck+1 = ck −αk∇f (ck), k = 0,1, . . .

Step-size αk ≥ 0

Descent direction −∇f (ck)

More generally, Gradient methods iterate as

ck+1 = ck +αkdk , k = 0,1, . . .

where the descent direction is

dk such that 〈dk , ∇f (ck)〉 < 0

NMA Algorithms

Background – Gradient Methods

Gradient descent: Vector ck+1 is chosen as

ck+1 = ck −αk∇f (ck), k = 0,1, . . .

Step-size αk ≥ 0

Descent direction −∇f (ck)

More generally, Gradient methods iterate as

ck+1 = ck +αkdk , k = 0,1, . . .

where the descent direction is

dk such that 〈dk , ∇f (ck)〉 < 0

NMA Algorithms

Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Gradient Methods
Gradient methods

ck+1 = ck +αkdk , k = 0,1, . . .

Different choices of dk

Scaled gradient dk = −Dk∇f (ck), Dk � 0
Note: Dk = I gives steepest descent
Newton’s method, conjugate gradients, etc.

Different choices of αk

Limited minimization αk = argmin0≤α≤s f (ck +αdk)
Armijo-line-search, backtracking, etc.

Step-sizes αk chosen to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Gradient Methods – Illustration

c
c + α1d

c + α2d

−∇f(c)

d

c− δ1∇f(c)

f(c
) = l2 <

l1
f(c)

= l1

l3 <
l2

∇f(c)
c− α1∇f(c)

(adapted from Bertsekas, Nonlinear Programming)

NMA Algorithms

Gradient Methods – Handling constraints

Our problem is constrained

minc≥0 f (c) = 1
2‖a − Bc‖2

F

Recall gradient-descent iteration

ck+1 =

P+(

ck −αk∇f (ck)

)

, k = 0,1, . . .

P+x =max(0,x): projection to ensure non-negativity

Note: Step-size αk selected to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Gradient Methods – Handling constraints

Our problem is constrained

minc≥0 f (c) = 1
2‖a − Bc‖2

F

Replace it with Gradient-Projection!

ck+1 = P+(ck −αk∇f (ck)), k = 0,1, . . .

P+x =max(0,x): projection to ensure non-negativity

Note: Step-size αk selected to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Gradient Methods – Handling constraints

Our problem is constrained

minc≥0 f (c) = 1
2‖a − Bc‖2

F

Replace it with Gradient-Projection!

ck+1 = P+(ck −αk∇f (ck)), k = 0,1, . . .

P+x =max(0,x): projection to ensure non-negativity

Note: Step-size αk selected to ensure descent

f (ck+1) < f (ck)

NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?
How to compute ∇F(Ck)?

NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?
How to compute ∇F(Ck)?

NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?
How to compute ∇F(Ck)?

NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?

How to compute ∇F(Ck)?

NMA Algorithms

Alternating NNLS – summary

minimize 1
2‖A− BC‖2

F s.t. B,C ≥ 0.

by alternating

C t+1 = argmin
C≥0

F(C) = ‖A− BtC‖2
F

Bt+1 = argmin
B≥0

F(B) = ‖A− BC t+1‖2
F ,

where each of the subproblems is solved (for fixed t) via

Ck+1 = P+(Ck −αk∇F(Ck)), k = 0,1, . . .

So are we ready to implement this?
How to compute ∇F(Ck)?

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

I. Compute ∂Tr(XY)/∂X

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

I. Compute ∂Tr(XY)/∂X
Recall Tr(XY) =

∑
ij xijyji . Hence, ∂Tr(XY)/∂X = Y T .

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

II. Verify that: ∂‖X‖2
F/∂X = 2X

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

II. Verify that: ∂‖X‖2
F/∂X = 2X

Solution:

Recall that ‖X‖2
F = Tr(X T X). So,

∂‖X‖2
F

∂X
= ∂Tr(X T X)

∂xpq
=
∂(
∑

ij x2
ij)

∂xpq
= 2xpq.

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

III. Verify that: ∂Tr(X T AX)/∂X = (A+AT)X

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

III. Verify that: ∂Tr(X T AX)/∂X = (A+AT)X
Solution: Brute force

Tr(X T AX) =
∑

ij
xij(AX)ji =

∑
ijk

xijajkxki

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

Exercise: IV.

Let F(C) = 1
2‖A− BC‖2

F ; compute ∂F/∂C

NMA Algorithms

Background – Matrix Derivatives

Derivative of f : Rm×n → R is defined as

∂f (X)
∂X

Õ
[
∂f (X)
∂xpq

]

Exercise: IV.

Let F(C) = 1
2‖A− BC‖2

F ; compute ∂F/∂C

Solution:

F(C) = ‖A‖2
F − 2 Tr(CAT B)+ Tr(CT BT BC)

∂F(C)
∂C

= −2BT A+ 2BT BC .

NMA Algorithms

In passing: The Fréchet derivative

Given f : V → W , the Fréchet differential at point X is the
linear-mapping L that satisfies for all E ∈ V the relation

f (X + E)− f (X)− L(X ,E) = o(‖E‖)

The Fréchet derivative Df (X) (of f at point X) identified via:

L(X ,E) = Df (X)(E)

Can be used to develop matrix calculus formally.

NMA Algorithms

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity

What is the computational complexity per (major) iteration?

Solution:

A lot! Especially since there might be many (inner) gradient
projection iterations for each major iteration.

What to do?

NMA Algorithms

Implementation

Exercise: LSNMA

Implement the gradient-projection NMA algorithm

Exercise: Complexity

What is the computational complexity per (major) iteration?

Solution:

A lot! Especially since there might be many (inner) gradient
projection iterations for each major iteration.

What to do?

NMA Algorithms

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

NMA Algorithms

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

NMA Algorithms

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

NMA Algorithms

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

NMA Algorithms

Alternating descent

Idea! Do not insist on minimization

Recall that we originally wanted descent

‖A− Bt+1C t+1‖2
F ≤ ‖A− BtC t+1‖2

F ≤ ‖A− BtC t‖2
F

For each major (t) iteration, run few inner iterations

Each inner iteration descends, so overall descent ensured

Instead: approximate gradient-projection algorithm

There exists a more popular alternating-descent algorithm!

NMA Algorithms

Multiplicative Updates

NMA Algorithms

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following “algorithm”

C ′ ← C � BT A

BT BC

B′ ← B � AC ′T

BC ′C ′T
.

This algorithm’s simplicity made NMA popular.

Note: A� B = [aijbij] – elementwise multiplication

Easy to see that nonnegativity respected

Somewhat harder to prove descent

‖A− B′C ′‖2
F ≤ ‖A− BC ′‖2

F ≤ ‖A− BC‖2
F

NMA Algorithms

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following “algorithm”

C ′ ← C � BT A

BT BC

B′ ← B � AC ′T

BC ′C ′T
.

This algorithm’s simplicity made NMA popular.

Note: A� B = [aijbij] – elementwise multiplication

Easy to see that nonnegativity respected

Somewhat harder to prove descent

‖A− B′C ′‖2
F ≤ ‖A− BC ′‖2

F ≤ ‖A− BC‖2
F

NMA Algorithms

The Lee & Seung Algorithm

Lee & Seung (2000) proposed the following “algorithm”

C ′ ← C � BT A

BT BC

B′ ← B � AC ′T

BC ′C ′T
.

This algorithm’s simplicity made NMA popular.

Note: A� B = [aijbij] – elementwise multiplication

Easy to see that nonnegativity respected

Somewhat harder to prove descent

‖A− B′C ′‖2
F ≤ ‖A− BC ′‖2

F ≤ ‖A− BC‖2
F

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)

3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)

def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct)

def= f (ct)

NMA Algorithms

Multiplicative updates – preliminaries

Let c be an arbitrary column of C . Consider the subproblem:

minc≥0 f (c) = 1
2‖a − Bc‖2

F

A general technique for deriving “descent” methods:

1 Find a function g(c, c̃) that satisfies:

g(c, c) = f (c), for all c,
g(c, c̃) ≥ f (c), for all c, c̃.

2 Compute ct+1 = argminc g(c, ct)
3 Then we have descent

f (ct+1)
def
≤ g(ct+1, ct)

argmin
≤ g(ct , ct) def= f (ct)

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

Non-convex, and a convex set

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

x1 x2

λx1 + (1− λ)
x2

h(x1)

h(x2)

A convex function

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 =

1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c

+ 1
2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g
Main difficulty for f (c) = 1

2‖a − Bc‖2
2 due to Bc

We need to decouple Bc — let’s see how.

We exploit that h(x) = 1
2x2 is a convex function

h
(∑

i λixi
)
≤
∑

i λih(xi), where λi ≥ 0,
∑

i λi = 1

f (c) = 1
2

∑
i
(ai − bT

i c)2 = 1
2

∑
i
a2

i − 2aib
T
i c + (bT

i c)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
bijcj

)2

= 1
2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
i

(∑
j
λijbijcj/λij

)2

cvx
≤ 1

2

∑
i
a2

i − 2aib
T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

= g(c, c̃), where λij are convex coeffts

NMA Algorithms

Constructing g

In summary:

f (c) = 1
2‖a − Bc‖2

2

g(c, c̃) = 1
2‖a‖

2
2 −

∑
i
aib

T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

Now we pick λij

λij =
bij c̃j∑
k bik c̃k

= bij c̃j

bT
i c̃

Exercise: Aux function

Verify that g(c, c) = f (c);

Exercise: Richardson-Lucy

Let f (c) =
∑

i ai log(ai/(Bc)i)− ai + (Bc)i .
Derive an auxiliary function g(c, c̃) for this f (c)

NMA Algorithms

Constructing g

In summary:

f (c) = 1
2‖a − Bc‖2

2

g(c, c̃) = 1
2‖a‖

2
2 −

∑
i
aib

T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

Now we pick λij

λij =
bij c̃j∑
k bik c̃k

= bij c̃j

bT
i c̃

Exercise: Aux function

Verify that g(c, c) = f (c);

Exercise: Richardson-Lucy

Let f (c) =
∑

i ai log(ai/(Bc)i)− ai + (Bc)i .
Derive an auxiliary function g(c, c̃) for this f (c)

NMA Algorithms

Constructing g

In summary:

f (c) = 1
2‖a − Bc‖2

2

g(c, c̃) = 1
2‖a‖

2
2 −

∑
i
aib

T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

Now we pick λij

λij =
bij c̃j∑
k bik c̃k

= bij c̃j

bT
i c̃

Exercise: Aux function

Verify that g(c, c) = f (c);

Exercise: Richardson-Lucy

Let f (c) =
∑

i ai log(ai/(Bc)i)− ai + (Bc)i .
Derive an auxiliary function g(c, c̃) for this f (c)

NMA Algorithms

Constructing g

In summary:

f (c) = 1
2‖a − Bc‖2

2

g(c, c̃) = 1
2‖a‖

2
2 −

∑
i
aib

T
i c + 1

2

∑
ij
λij
(
bijcj/λij

)2

Now we pick λij

λij =
bij c̃j∑
k bik c̃k

= bij c̃j

bT
i c̃

Exercise: Aux function

Verify that g(c, c) = f (c);

Exercise: Richardson-Lucy

Let f (c) =
∑

i ai log(ai/(Bc)i)− ai + (Bc)i .
Derive an auxiliary function g(c, c̃) for this f (c)

NMA Algorithms

Minimizing g
Recall,core step: ct+1 = argmin g(c, ct)
Solve ∂g(c, ct)/∂cp = 0

∂g/∂cp = −
∑

i
aibip +

∑
i
bip(bT

i ct)cp/ct
p

Which yields (verify!) : cp = ct
p
[BT a]p
[BT Bct]p

Extending to matrices, we obtain Lee & Seung’s update

C t+1 = C t � BT A

BT BC t

NMA Algorithms

Minimizing g
Recall,core step: ct+1 = argmin g(c, ct)
Solve ∂g(c, ct)/∂cp = 0

∂g/∂cp = −
∑

i
aibip +

∑
i
bip(bT

i ct)cp/ct
p

Which yields (verify!) : cp = ct
p
[BT a]p
[BT Bct]p

Extending to matrices, we obtain Lee & Seung’s update

C t+1 = C t � BT A

BT BC t

NMA Algorithms

Minimizing g
Recall,core step: ct+1 = argmin g(c, ct)
Solve ∂g(c, ct)/∂cp = 0

∂g/∂cp = −
∑

i
aibip +

∑
i
bip(bT

i ct)cp/ct
p

Which yields (verify!) : cp = ct
p
[BT a]p
[BT Bct]p

Extending to matrices, we obtain Lee & Seung’s update

C t+1 = C t � BT A

BT BC t

NMA Algorithms

Minimizing g
Recall,core step: ct+1 = argmin g(c, ct)
Solve ∂g(c, ct)/∂cp = 0

∂g/∂cp = −
∑

i
aibip +

∑
i
bip(bT

i ct)cp/ct
p

Which yields (verify!) : cp = ct
p
[BT a]p
[BT Bct]p

Extending to matrices, we obtain Lee & Seung’s update

C t+1 = C t � BT A

BT BC t

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Some remarks regarding g

We exploited convexity of x2

Expectation Maximization (EM) algorithm exploits
convexity of − log x

Richardson-Lucy (Astronomy), or EMML / MLEM
(Tomography) exploits x log x

Other choices possible, e.g., by varying λij

Our technique one variant of repertoire of
Majorization-Minimization (MM) algorithms

Related to d.c. programming

MM algorithms subject of a separate lecture!

NMA Algorithms

Summary

We looked at least-squares NMA

min 1
2‖A− BC‖2

F , s.t. B,C ≥ 0.

We derived two algorithms: (i) Gradient-Projection; (ii)
multiplicative updates

Take home message: The methods, techniques that we saw,
are general. You can use them for many other problems!

NMA Algorithms

Summary

We looked at least-squares NMA

min 1
2‖A− BC‖2

F , s.t. B,C ≥ 0.

We derived two algorithms: (i) Gradient-Projection; (ii)
multiplicative updates

Take home message: The methods, techniques that we saw,
are general. You can use them for many other problems!

NMA Algorithms

Summary

We looked at least-squares NMA

min 1
2‖A− BC‖2

F , s.t. B,C ≥ 0.

We derived two algorithms: (i) Gradient-Projection; (ii)
multiplicative updates

Take home message: The methods, techniques that we saw,
are general. You can use them for many other problems!

TSVD NMA

Applications & Practical
Concerns

TSVD NMA

Applications – example areas

1 Statistics

2 Data mining, Machine learning

3 Signal processing (images, speech, music, etc.)

4 Computer graphics

5 Chemometrics

6 Remote Sensing

7 Scientific computing

8 …

TSVD NMA

TSVD

Statistics

Psychometrics

Data Mining, Machine learning

Information Retrieval

Biology, Bioinformatics

In general, exploratory data analysis

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).
Activity recorded using gene microarray

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).
Activity recorded using gene microarray

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).
Activity recorded using gene microarray
Activities across numerous “conditions” or experiments

We measure an m × n (m� n) genes × array matrix.

Some “cleaning” (pre-processing) etc. needed.

Truncated SVD on this gene-expression matrix is performed.

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).

TSVD NMA

Bioinformatics – gene microarray analysis

Biologists measure activity (aka gene-expression) of different
genes under various conditions (time, temperature, etc.).

Significant “eigengenes” =⇒ independent biological
processes and experimental artifacts.

Figure taken from: http://www.bme.utexas.edu/research/orly/teaching/BME341

http://www.bme.utexas.edu/research/orly/teaching/BME341

TSVD NMA

NMA

Chemometrics

Document modeling, text-analysis

Spam modeling

Bioinformatics

Music analysis

Computer Vision

Image processing

Remote sensing (hyperspectral imaging)

Dimensionality reduction

Computer graphics

Collaborative filtering

Multiframe blind deconvolution

TSVD NMA

NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

TSVD NMA

NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

TSVD NMA

NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

TSVD NMA

NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

TSVD NMA

NMA – Text Analysis

Dataset: Collection of 3891 documents

Each document represented as a 4857 dimensional vector

Data matrix: A ∈ R4857×3891
+

Three “human” defined categories CISI, CRAN and MED

NMA: A ≈ BC , where B has 3 columns — representing “topics”

CISI CRAN MED
retrieval wing patients
system pressure cells
systems mach growth
indexing supersonic hormone
scientific shock cancer
science jet treatment
index lift buckling
search wings blood

computer body cases
document theory cell

TSVD NMA

Image analysis – toy example

“Swimmer” database – 256, 32 x 32 images [DoSt03]

Stick figures showing different configurations of the
limbs of a swimmer

Data matrix of size 1024× 256

Decompose the matrix into 1024× 17 (17 seemed to be
the “true” nonnegative rank)

TSVD NMA

Image analysis – toy example

“Swimmer” database – 256, 32 x 32 images [DoSt03]

Stick figures showing different configurations of the
limbs of a swimmer

Data matrix of size 1024× 256

Decompose the matrix into 1024× 17 (17 seemed to be
the “true” nonnegative rank)

TSVD NMA

Image analysis – toy example

Rank-17 decomposition via Lee/Seung’s algo
Time: 182.4 seconds, Objective: 2.41× 107

TSVD NMA

Image analysis – toy example

Via more advanced projection algorithm
Time: 62.3 seconds, Objective: 6.85× 10−4

TSVD NMA

Part of a face recognition system

143 images from MIT face image database

Input matrix A ∈ R9216×143
+

TSVD NMA

Part of a face recognition system

A rank-20 approximation to the input

The basis vectors (columns of B) approximately
correspond to important “parts” describing the faces.

TSVD NMA

Multiframe blind deconvolution – astronomy

long-time exposure (approx. 1 s)
Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

TSVD NMA

Multiframe blind deconvolution – astronomy

short-time exposure (approx. 10ms)
Problem: Atmospheric turbulence

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

TSVD NMA

Multiframe blind deconvolution – astronomy

real-time video (15 fps)
Problem: Atmospheric turbulences

Courtesy of Karl-Ludwig Bath, IAS, Hakos, Namibia

TSVD NMA

Our model of the video

time t y t = at ? x + nt

0 = ? + n0

1 = ? + n1

2 = ? + n2

k = ? + nk

TSVD NMA

Our model of the video

time t y t = at ? x + nt

0 = ? + n0

1 = ? + n1

2 = ? + n2

k = ? + nk

TSVD NMA

|

... |
y 1 | y n

|
... |

 ≈

|

... |
a1 | at

|
... |

? x

Convolution operation may be written as

a ? x = Ax = Xa

TSVD NMA

|

... |
y 1 | y n

|
... |

 ≈

|

... |
a1 | at

|
... |

? x

Convolution operation may be written as

a ? x = Ax = Xa

y 1
...

y t

 ≈
A1

· · ·
At

x

[
y 1 y 2 · · · y t

]
≈ X

[
a1 a2 · · · at

]
Y ≈ XA

TSVD NMA

Multiframe blind deconvolution

We seek to minimize

1
2‖Y − XA‖2

F s.t. X ,A ≥ 0

Note 1: X and A are the unknowns
Note 2: Additional constraints may be present on X or A
Note 3: Looks like an NMA problem (except X or A have
special structure due to the convolution a ? x)

TSVD NMA

Multiframe blind deconvolution

We seek to minimize

1
2‖Y − XA‖2

F s.t. X ,A ≥ 0

Note 1: X and A are the unknowns
Note 2: Additional constraints may be present on X or A
Note 3: Looks like an NMA problem (except X or A have
special structure due to the convolution a ? x)

TSVD NMA

Double star epsilon lyrae

time t y t = x t

1 =

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

2 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

3 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

4 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

5 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

6 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

7 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

8 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

9 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

10 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

11 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

12 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

13 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

14 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

15 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

16 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

17 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

18 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

19 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

20 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

21 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

22 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

23 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

24 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

25 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

26 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

27 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

28 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

29 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

30 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

31 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

32 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

33 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

34 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

35 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

36 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

37 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

38 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

39 ≈ ?

TSVD NMA

Double star epsilon lyrae

time t y t ≈ at ? x t

40 ≈ ?

TSVD NMA

MFBD Video

Video example

Summary Challenges

Discussion & Wrap-up

Summary Challenges

Summary

1 Introduction to matrix approximation problems
Background, motivation
Truncated SVD; its properties
List of some popular problems, e.g., NMA

2 Algorithms for NMA
Alternating minimization
Alternating descent
Gradient Projection
Multiplicative updates

3 Applications
Bioinformatics app of SVD
Image processing, astronomy, etc. of NMA

Summary Challenges

Challenges, other stuff

Theoretical: Non-convex optimization

Analysis, new algorithms, new problems

Practical: Large-scale, sparse data

Cluster, multi-core, GPU, etc.

Efficient SVD (PROPACK, SLEPc, etc.)

Methods based on random projections

Numerous other matrix nearness problems exist

Tensor approximations

Summary Challenges

Challenges, other stuff

Theoretical: Non-convex optimization
Analysis, new algorithms, new problems
Practical: Large-scale, sparse data
Cluster, multi-core, GPU, etc.
Efficient SVD (PROPACK, SLEPc, etc.)
Methods based on random projections
Numerous other matrix nearness problems exist
Tensor approximations

Summary Challenges

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data

Analysis on MapReduce by Chao Liu et al.

Input matrix A of size 43.9M × 769M; total 4.38× 109

nonzeros (1.2× 10−7 - density)

7 hours per iteration (dedicated cluster of 8 comps)

http://research.microsoft.com/pubs/119077/DNMF.pdf

I think YOU can do better!

http://research.microsoft.com/pubs/119077/DNMF.pdf

Summary Challenges

Closing: Huge Matrix Problems

Distributed Nonnegative Matrix Factorization for Web-Scale Dyadic Data

Analysis on MapReduce by Chao Liu et al.

Input matrix A of size 43.9M × 769M; total 4.38× 109

nonzeros (1.2× 10−7 - density)

7 hours per iteration (dedicated cluster of 8 comps)

http://research.microsoft.com/pubs/119077/DNMF.pdf

I think YOU can do better!

http://research.microsoft.com/pubs/119077/DNMF.pdf

	Introduction
	What?
	Introduction
	Why?
	Preliminaries
	TSVD

	Problems
	Problems

	Theory
	NMA Algorithms

	Applications
	TSVD
	NMA

	Discussion
	Summary
	Challenges

